Enhancing droplet deposition through in-situ precipitation
Tóm tắt
Retention of agricultural sprays on plant surfaces is an important
challenge. Bouncing of sprayed pesticide droplets from leaves is a major source of
soil and groundwater pollution and pesticide overuse. Here we report a method to
increase droplet deposition through
Từ khóa
Tài liệu tham khảo
Matthews, G. Pesticide Application Methods John Wiley & Sons (2008).
Martens, D. C. & Westermann, D. T. in Micronutrients in Agriculture 549–592SSSA (1991).
Snyder, R. L. & Melo-Abreu, J. P. Frost Protection: Fundamentals, Practice and EconomicsVol. 1, (FAO (2005).
Massinon, M. & Lebeau, F. Comparison of spray retention on synthetic superhydrophobic surface with retention on outdoor grown wheat leaves.Int. Adv. Pestic. Appl. Asp. Appl. Biol.114, 2012 (2012).
Gilliom, R. J. et al. Pesticides in the Nation’s Streams and Ground Water, 1992–2001 Geological Survey (US) (2006).
De Rutter, H., Uffing, A. J., Meinen, E. & Prins, A. Influence of surfactants and plant species on leaf retention of spray solutions. Weed Sci.38, 567–572 (1990).
Patankar, N. A. Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir20, 8209–8213 (2004).
Pionke, H. B. & Glotfelty, D. E. Nature and extent of groundwater contamination by pesticides in an agricultural watershed. Water Res.23, 1031–1037 (1989).
Pimentel, D. & Levitan, L. Pesticides: amounts applied and amounts reaching pests. Bioscience36, 86–91 (1986).
Clanet, C., Béguin, C., Richard, D. & Quéré, D. Maximal deformation of an impacting drop. J. Fluid Mech.517, 199–208 (2004).
Rein, M. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res.12, 61 (1993).
De Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves Springer (2004).
Bird, J. C., Dhiman, R., Kwon, H.-M. & Varanasi, K. K. Reducing the contact time of a bouncing drop. Nature503, 385–388 (2013).
Mock, U., Michel, T., Tropea, C., Roisman, I. & Rühe, J. Drop impact on chemically structured arrays. J. Phys. Condens. Matter17, S595 (2005).
Deng, X., Schellenberger, F., Papadopoulos, P., Vollmer, D. & Butt, H.-J. Liquid drops impacting superamphiphobic coatings. Langmuir29, 7847–7856 (2013).
Duez, C., Ybert, C., Clanet, C. & Bocquet, L. Making a splash with water repellency. Nat. Phys.3, 180–183 (2007).
de Ruiter, J., Oh, J. M., van den Ende, D. & Mugele, F. Dynamics of collapse of air films in drop impact. Phys. Rev. Lett.108, 74505 (2012).
Smith, D. B., Askew, S. D., Morris, W. H., Shaw, D. R. & Boyette, M. Droplet size and leaf morphology effects on pesticide spray deposition. Trans. ASAE-Am. Soc. Agric. Eng.43, 255–262 (2000).
Bergeron, V., Bonn, D., Martin, J. Y. & Vovelle, L. Controlling droplet deposition with polymer additives. Nature405, 772–775 (2000).
Gaskin, R. E., Steele, K. D. & Forster, W. A. Characterising plant surfaces for spray adhesion and retention. New Zealand Plant Prot.58, 179 (2005).
Richard, D., Clanet, C. & Quéré, D. Surface phenomena: contact time of a bouncing drop. Nature417, 811 (2002).
Zhang, X. & Basaran, O. A. Dynamic surface tension effects in impact of a drop with a solid surface. J. Colloid Interface Sci.187, 166–178 (1997).
Aytouna, M., Bartolo, D., Wegdam, G., Bonn, D. & Rafaï, S. Impact dynamics of surfactant laden drops: dynamic surface tension effects.Exp. Fluids48, 49–57 (2010).
Ellis, B., Tuck, C. R. & Miller, P. C. H. How surface tension of surfactant solutions influences the characteristics of sprays produced by hydraulic nozzles used for pesticide application. Colloids Surf. Physicochem. Eng. Asp.180, 267–276 (2001).
Bergeron, V. Designing intelligent fluids for controlling spray applications. Comptes Rendus Phys.4, 211–219 (2003).
Bartolo, D., Boudaoud, A., Narcy, G. & Bonn, D. Dynamics of non-Newtonian droplets. Phys. Rev. Lett.99, 174502 (2007).
Smith, M. & Bertola, V. The anti-rebound effect of flexible polymers on impacting drops. In Proceedings of 23rd Annual Conference Liquid Atomization Spray Systems Europe (ILASS-Europe)124, (2010).
Rozhkov, A., Prunet-Foch, B. & Vignes-Adler, M. Impact of drops of polymer solutions on small targets. Phys. Fluids15, 2006–2019 (2003).
Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science277, 1232–1237 (1997).
Porcel, C. H. et al. Ultrathin coatings and (poly(glutamic acid)/polyallylamine) films deposited by continuous and simultaneous spraying.Langmuir21, 800–802 (2005).
Huang, R., Wu, S., Li, A. & Li, Z. Integrating interfacial self-assembly and electrostatic complexation at an aqueous interface for capsule synthesis and enzyme immobilization. J. Mater. Chem. A2, 1672–1676 (2014).
Wiśniewska, M., Urban, T., Grządka, E., Zarko, V. I. & Gun’ko, V. M. Comparison of adsorption affinity of polyacrylic acid for surfaces of mixed silica–alumina. Colloid Polym. Sci.292, 699–705 (2014).
Michaels, A. S. & Miekka, R. G. Polycation-polyanion complexes: preparation and properties of poly-(vinylbenzyltrimethylammonium) poly-(styrenesulfonate). J. Phys. Chem.65, 1765–1773 (1961).
Anand, S., Paxson, A. T., Dhiman, R., Smith, J. D. & Varanasi, K. K. Enhanced condensation on lubricant-impregnated nanotextured surfaces.ACS Nano6, 10122–10129 (2012).
Andelman, D. & Joanny, J.-F. Polyelectrolyte adsorption.Comptes Rendus Académie Sci. - Ser. IV-Phys.1, 1153–1162 (2000).
Laan, N., de Bruin, K. G., Bartolo, D., Josserand, C. & Bonn, D. Maximum diameter of impacting liquid droplets. Phys. Rev. Appl.2, 44018 (2014).
Lee, J. B. et al. Universal rescaling of drop impact on smooth and rough surfaces. J. Fluid Mech.786, R4 (2015).
Bartolo, D., Josserand, C. & Bonn, D. Retraction dynamics of aqueous drops upon impact on non-wetting surfaces. J. Fluid Mech.545, 329–338 (2005).
McKinley, G. H. & Renardy, M. Wolfgang von Ohnesorge. Phys. Fluids 1994-Present23, 127101 (2011).
Biance, A.-L., Chevy, F., Clanet, C., Lagubeau, G. & Quéré, D. On the elasticity of an inertial liquid shock. J. Fluid Mech.554, 47–66 (2006).
Jayaratne, O. W. & Mason, B. J. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences280, 545–565The Royal Society (1964).
Orme, M. Experiments on droplet collisions, bounce, coalescence and disruption. Prog. Energy Combust. Sci.23, 65–79 (1997).
Hao, C. et al. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces. Nat. Commun.6, 7986 (2015).
Joanny, J. F. & De Gennes, P.-G. A model for contact angle hysteresis. J. Chem. Phys.81, 552–562 (1984).
Paxson, A. T. & Varanasi, K. K. Self-similarity of contact line depinning from textured surfaces. Nat. Commun.4, 1492 (2013).
Netz, R. R. & Andelman, D. in Encyclopedia of electrochemistry 282–322Wiley-VCH Verlag GmbH & Co. KGaA (2002).
Wu, M., Cubaud, T. & Ho, C.-M. Scaling law in liquid drop coalescence driven by surface tension. Phys. Fluids 1994-Present16, L51–L54 (2004).
McKinley, G. H. Dimensionless groups for understanding free surface flows of complex fluids. Soc. Rheol. Bull.2005, 6–9 (2005).
Furmidge, C. G. L. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. J. Colloid Sci.17, 309–324 (1962).
Yu, Y., Zhu, H., Ozkan, H. E., Derksen, R. C. & Krause, C. R. Evaporation and deposition coverage area of droplets containing insecticides and spray additives on hydrophilic, hydrophobic, and crabapple leaf surfaces.Trans. ASABE52, 39–49 (2009).
Kumar, C. S. & Karthikeyan, D. A review: polyelectrolyte polysaccharides nanoparticles on diabetic mellitus. Indo Am. J. Pharm. Res.3, 1446–1457 (2013).
Silva, C. L., Pereira, J. C., Ramalho, A., Pais, A. A. & Sousa, J. J. Films based on chitosan polyelectrolyte complexes for skin drug delivery: development and characterization. J. Membr. Sci.320, 268–279 (2008).