Effect of acetazolamide and subsequent ventriculo-peritoneal shunting on clinical signs and ventricular volumes in dogs with internal hydrocephalus

Acta Veterinaria Scandinavica - Tập 57 - Trang 1-6 - 2015
Malgorzata Kolecka1, Nele Ondreka1, Andreas Moritz1, Martin Kramer1, Martin J. Schmidt1
1Department of Veterinary Clinical Sciences, Small Animal Clinic, Justus-Liebig-University, Giessen, Germany

Tóm tắt

Acetazolamide is recommended for the reduction of cerebrospinal fluid production in canine internal hydrocephalus. The efficacy of the drug in terms of alleviation of the clinical symptoms and the restoration of normal ventricular volume has not been documented. We hypothesize that acetazolamide inadequately improve clinical signs and has no effect on the ventricular volume. Six dogs with internal hydrocephalus underwent neurological examination and were examined by magnetic resonance imaging, on the day of the diagnosis, after treatment with acetazolamide directly before surgery, and 6 weeks after implantation of a vetriculo-peritoneal shunt due to lack of improvement after medical therapy with 10 mg/kg acetazolamide three times daily (TID). The ventricular volume in relation to the total brain volume was determined on each occasion. The changes in relative ventricular volume and of the neurological status were assessed and compared. McNemar’s test revealed no significant differences in clinical symptoms before and after medical treatment (P > 0.05). However, clinical symptoms changed significantly after surgical treatment (P = 0.001). The ventricle-brain ratio was not significantly changed after therapy with acetazolamide (P > 0.05); however, after subsequent shunt implantation, it was significantly reduced (P = 0.001). Acetazolamide (10 mg/kg TID) showed no effects on clinical signs or ventricular volume in dogs with internal hydrocephalus. After subsequent ventriculo-peritoneal shunting, the dogs had a significantly reduced cerebral ventricular volume and five out of six dogs had no abnormal findings in neurological examination.

Tài liệu tham khảo

DeLahunta A, Glass E (2014) Malformations. In: Veterinary neuroanatomy and clinical neurology. Saunders Elsevier, Missouri, pp 37–53 Lorenz MD, Coates JR, Kent M (2011) Stupor and coma. In: Handbook of veterinary neurology. Elsevier Saunders, Missouri, pp 346–383 Platt S, Garosi L (2013) Hydrocephalus. In: Small animal neurological emergencies. Manson Publishing/The Veterinary Press, pp 147–150 Gandini G, Jaggy A, Challande-Kathmann I (2010) Diseases of the cerebrum. In: Jaggy A, Platt SR (eds) Small animal neurology. Schlütersche Verlagsgesellschaft GmbH & Co. KG, Hannover, pp 427–466 Biel M, Kramer M, Forterre F, Jurina K, Lautersack O, Failing K, Schmidt MJ (2013) Outcome of ventriculoperitoneal shunt implantation for treatment of congenital internal hydrocephalus in dogs and cats: 36 cases (2001–2009). J Am Vet Med Assoc 242:948–958 Laubner S, Ondreka N, Failing K, Kramer M, Schmidt M (2015) Magnetic resonance imaging signs of high intraventricular pressure—comparison of findings in dogs with clinically relevant internal hydrocephalus and asymptomatic dogs with ventriculomegaly. BMC Vet Res 11:181 Vullo T, Deo-Narine V, Stallmeyer MJ, Gomez DG, Cahill PT (1996) Quantitation of normal canine hippocampus formation volume: correlation of MRI with gross histology. Magn Reson Imaging 14:657–662 Montie EW, Pussini N, Schneider GE, Battey TW, Dennison S, Barakos J, Gulland F (2009) Neuroanatomy and volumes of brain structures of a live California sea lion (Zalophus californianus) from magnetic resonance images. Anat Rec 292:1523–1547 Kennedy CR, Ayers S, Campbell MJ, Elbourne D, Hope P, Johnson A (2001) Randomized controlled trial of acetazolamide and furosemide in posthemorrhagic ventricular dilation in infancy: follow-up at 1 year. Pediatrics 108:597–607 Itoh T, Nishimura R, Matsunaga S, Kadosawa T, Mochizuki M, Sasaki N (1996) Syringomyelia and hydrocephalus in a dog. J Am Vet Med Assoc 209:934–936 Schwartz TH, Yoon SS, Cutruzzola FW, Goodman RR (1996) Third ventriculostomy: post-operative ventricular size and outcome. Minim Invas Neurosurg 39:122–129 Yamada H, Yokota A, Furuta A, Horie A (1992) Reconstitution of shunted mantle in experimental hydrocephalus. J Neurosurg 76:856–862 Vogh BP (1980) The relation of choroid plexus carbonic anhydrase activity to cerebrospinal fluid formation: study of three inhibitors in cat with extrapolation to man. J Pharmacol Exp Ther 213:321–331 Friedland BR, Maren TH (1994) Pharmacology of the eye—carbonic anhydrase: pharmacology of inhibitors and treatment of glaucoma. Handb Exp Pharmacol 69:279–309 Oppelt WW, Patlak CS, Rall DP (1964) Effect of certain drugs on cerebrospinal fluid production in the dog. Am J Physiol 206:247–250 Holloway LS Jr, Cassin S (1972) Effects of acetazolamide and ouabain on CSF production rate in newborn dogs. Am J Physiol 223:503–506 Nógrádi A, Kelly C, Carter ND (1993) Localization of acetazolamide-resistant carbonic anhydrase III in human and rat choroid plexus by immunocytochemistry and in situ hybridisation. Neurosci Lett 151:162–165