Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction-diffusion problems
Tóm tắt
Residual-type a posteriori error estimates in the maximum norm are given for singularly perturbed semilinear reaction-diffusion equations posed in polyhedral domains. Standard finite element approximations are considered. The error constants are independent of the diameters of mesh elements and the small perturbation parameter. In our analysis, we employ sharp bounds on the Green’s function of the linearized differential operator. Numerical results are presented that support our theoretical findings.
Tài liệu tham khảo
Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications Inc, New York (1992). (Reprint of the 1972 edition)
Ainsworth, M., Babuška, I.: Reliable and robust a posteriori error estimating for singularly perturbed reaction-diffusion problems. SIAM J. Numer. Anal. 36, 331–353 (1999)
Ainsworth, M., Vejchodský, T.: Fully computable robust a posteriori error bounds for singularly perturbed reaction-diffusion problems. Numer. Math. 119, 219–243 (2011)
Andreev, V.B., Kopteva, N.: Pointwise approximation of corner singularities for a singularly perturbed reaction-diffusion equation in an \(L\)- shaped domain. Math. Comput. 77, 2125–2139 (2008)
Blatov, I.A.: Galerkin finite element method for elliptic quasilinear singularly perturbed boundary problems. I. Differ. Uravn. 28, 1168–1177 (1992) (translation Differ. Equ. 28, 931–940 (1992))
Brézis, H., Strauss, W.A.: Semi-linear second-order elliptic equations in \(L^{1}\). J. Math. Soc. Jpn. 25, 565–590 (1973)
Chadha, N.M., Kopteva, N.: Maximum norm a posteriori error estimate for a 3d singularly perturbed semilinear reaction-diffusion problem. Adv. Comput. Math. 35, 33–55 (2011)
Chen, L.: iFEM: An Innovative Finite Element Method Package in Matlab, tech. rep., University of California-Irvine, California (2009)
Clavero, C., Gracia, J.L., O’Riordan, E.: A parameter robust numerical method for a two dimensional reaction-diffusion problem. Math. Comput. 74, 1743–1758 (2005)
Dari, E., Durán, R.G., Padra, C.: Maximum norm error estimators for three-dimensional elliptic problems. SIAM J. Numer. Anal. 37, 683–700 (2000). (electronic)
Demlow, A., Georgoulis, E.: Pointwise a posteriori error control for discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 50, 2159–2181 (2012)
Demlow, A., Leykekhman, D., Schatz, A.H., Wahlbin, L.B.: Best approximation property in the \({W}_\infty ^1\) norm for finite element methods on graded meshes. Math. Comput. 81, 743–764 (2012)
Duong, X.T., Hofmann, S., Mitrea, D., Mitrea, M., Yan, L.: Hardy spaces and regularity for the inhomogeneous Dirichlet and Neumann problems. Rev. Mat. Iberoam. 29, 183–236 (2013)
Durán, R.G.: A note on the convergence of linear finite elements. SIAM J. Numer. Anal. 25, 1032–1036 (1988)
Eriksson, K.: An adaptive finite element method with efficient maximum norm error control for elliptic problems. Math. Models Methods Appl. Sci. 4, 313–329 (1994)
Fellner, K., Kovtunenko, V.: A singularly Perturbed Nonlinear Poisson-Boltzmann Equation: Uniform and Super-Asymptotic Expansions. Tech. rep., SFB F 32/Universität Graz (2014)
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer-Verlag, Berlin (1998)
Grinberg, G.A.: Some topics in the mathematical theory of electrical and magnetic phenomena (Nekotorye voprosy matematicheskoi teorii elektricheskih i magnitnyh yavlenii). USSR Academy of Sciences, Leningrad (1943). (Russian)
Guzmán, J., Leykekhman, D., Rossmann, J., Schatz, A.H.: Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods. Numer. Math. 112, 221–243 (2009)
Haverkamp, R.: Eine Aussage zur \(L_{\infty }\)- Stabilität und zur genauen Konvergenzordnung der \(H^{1}_{0}\)- Projektionen. Numer. Math. 44, 393–405 (1984)
Jerison, D., Kenig, C.E.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130, 161–219 (1995)
Juntunen, M., Stenberg, R.: A residual based a posteriori estimator for the reaction-diffusion problem. C. R. Math. Acad. Sci. Paris 347, 555–558 (2009)
Juntunen, M., Stenberg, R.: Analysis of finite element methods for the Brinkman problem. Calcolo 47, 129–147 (2010)
Kopteva, N.: Maximum norm a posteriori error estimate for a 2d singularly perturbed reaction-diffusion problem. SIAM J. Numer. Anal. 46, 1602–1618 (2008)
Kopteva, N.: Maximum-norm a posteriori error estimates for singularly perturbed reaction-diffusion problems on anisotropic meshes. SIAM J. Numer. Anal. (2015, to appear). http://www.staff.ul.ie/natalia/pdf/rd_ani_R1_mar15.pdf
Kopteva, N., Linß, T.: Maximum norm a posteriori error estimation for parabolic problems using elliptic reconstructions. SIAM J. Numer. Anal. 51, 1494–1524 (2013)
Kreuzer, C., Siebert, K.G.: Decay rates of adaptive finite elements with Dörfler marking. Numer. Math. 117, 679–716 (2011)
Kunert, G.: Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes. Adv. Comput. Math. 15, 237–259 (2001)
Kunert, G.: A posterior \(H^1\) error estimation for a singularly perturbed reaction diffusion problem on anisotropic meshes. IMA J. Numer. Anal. 25, 408–428 (2005)
Leykekhman, D.: Uniform error estimates in the finite element method for a singularly perturbed reaction-diffusion problem. Math. Comput. 77(261), 21–39 (2008)
Lin, R., Stynes, M.: A balanced finite element method for singularly perturbed reaction-diffusion problems. SIAM J. Numer. Anal. 50, 2729–2743 (2012)
Nochetto, R.H.: Pointwise a posteriori error estimates for elliptic problems on highly graded meshes. Math. Comput. 64, 1–22 (1995)
Nochetto, R.H., Schmidt, A., Siebert, K.G., Veeser, A.: Pointwise a posteriori error estimates for monotone semilinear problems. Numer. Math. 104, 515–538 (2006)
Nochetto, R.H., Siebert, K.G., Veeser, A.: Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95, 163–195 (2003)
Nochetto, R.H., Siebert, K.G., Veeser, A.: Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J. Numer. Anal. 42, 2118–2135 (2005). (electronic)
Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comput. 38, 437–445 (1982)
Schatz, A.H., Wahlbin, L.B.: On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions. Math. Comput. 40, 47–89 (1983)
Schatz, A.H., Wahlbin, L.B.: Interior maximum-norm estimates for finite element methods, Part II. Math. Comput. 64, 907–928 (1995)
Shishkin, G.I.: Grid approximation of singularly perturbed elliptic and parabolic equations. Ur. O Ran, Ekaterinburg (1992). (Russian)
Stevenson, R.P.: The uniform saturation property for a singularly perturbed reaction-diffusion equation. Numer. Math. 101, 355–379 (2005)
Tikhonov, A.N., Samarskiĭ, A.A.: Equations of Mathematical Physics. Dover Publications Inc, New York (1990). Translated from the Russian by A.R.M. Robson and P. Basu, Reprint of the 1963 translation
Verfürth, R.: Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation. Numer. Math. 78, 479–493 (1998)