Industrial scale high-throughput screening delivers multiple fast acting macrofilaricides

Nature Communications - Tập 10 Số 1
Rachel H. Clare1, Catherine Bardelle2, Paul Harper2, W. David Hong3, Ulf Börjesson4, Kelly L. Johnston1, Matthew Collier2, Laura J. Myhill1, Andrew Cassidy1, Darren Plant2, Helen Plant2, Roger Clark2, Darren A. N. Cook1, Andrew Steven1, John Archer1, Paul McGillan3, Sitthivut Charoensutthivarakul1, Jaclyn Bibby3, Raman Sharma1, Gemma L. Nixon3, Barton E. Slatko5, Lindsey Cantin5, Bo Wu5, Joseph D. Turner1, Louise Ford1, Kirsty Rich2, Mark Wigglesworth2, Neil G. Berry3, Paul M. O’Neill3, Mark J. Taylor1, Stephen A. Ward1
1Centre for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
2Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield SK10 4TG, UK
3Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK
4Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, SE-431 83, Sweden
5Genome Biology Division, New England Biolabs, Inc, Ipswich, 01938, MA, USA

Tóm tắt

AbstractNematodes causing lymphatic filariasis and onchocerciasis rely on their bacterial endosymbiont, Wolbachia, for survival and fecundity, making Wolbachia a promising therapeutic target. Here we perform a high-throughput screen of AstraZeneca’s 1.3 million in-house compound library and identify 5 novel chemotypes with faster in vitro kill rates (<2 days) than existing anti-Wolbachia drugs that cure onchocerciasis and lymphatic filariasis. This industrial scale anthelmintic neglected tropical disease (NTD) screening campaign is the result of a partnership between the Anti-Wolbachia consortium (A∙WOL) and AstraZeneca. The campaign was informed throughout by rational prioritisation and triage of compounds using cheminformatics to balance chemical diversity and drug like properties reducing the chance of attrition from the outset. Ongoing development of these multiple chemotypes, all with superior time-kill kinetics than registered antibiotics with anti-Wolbachia activity, has the potential to improve upon the current therapeutic options and deliver improved, safer and more selective macrofilaricidal drugs.

Từ khóa


Tài liệu tham khảo

Taylor, M. J., Hoerauf, A., Townson, S., Slatko, B. E. & Ward, S. A. Anti-Wolbachia drug discovery and development: safe macrofilaricides for onchocerciasis and lymphatic filariasis. Parasitology 141, 119–127 (2014).

Burrows, J. N. et al. The role of modern drug discovery in the fight against neglected and tropical diseases. MedChemComm 5, 688 (2014).

Hotez, P. J. et al. Control of neglected tropical diseases. N. Engl. J. Med. 357, 1018–1027 (2007).

Molyneux, D. H., Savioli, L. & Engels, D. Neglected tropical diseases: progress towards addressing the chronic pandemic. Lancet 389, 312–325 (2017).

Thomsen, E. K. et al. Efficacy, safety, and pharmacokinetics of co-administered diethylcarbamazine, albendazole, and ivermectin for the treatment of bancroftian Filariasis. Clin. Infect. Dis. 62, 1–8 (2015).

Fischer, P. U., King, C. L., Jacobson, J. A. & Weil, G. J. Potential value of triple drug therapy with ivermectin, diethylcarbamazine, and albendazole (IDA) to accelerate elimination of lymphatic filariasis and onchocerciasis in Africa. PLoS Negl. Trop. Dis. 11, e0005163 (2017).

Kamgno, J. et al. A test-and-not-treat strategy for onchocerciasis in loa loa-endemic areas. N. Engl. J. Med. 377, 2044–2052 (2017).

Wanji, S. et al. Relationship between oral declaration on adherence to ivermectin treatment and parasitological indicators of onchocerciasis in an area of persistent transmission despite a decade of mass drug administration in Cameroon. Parasit. Vectors 8, 1–16 (2015).

Senyonjo, L. et al. Factors associated with Ivermectin non-compliance and its potential role in sustaining Onchocerca volvulus transmission in the west region of cameroon. PLoS Negl. Trop. Dis. 10, 1–16 (2016).

Hoerauf, A. et al. Wolbachia endobacteria depletion by doxycycline as antifilarial therapy has macrofilaricidal activity in onchocerciasis: a randomized placebo-controlled study. Med. Microbiol. Immunol. 197, 295–311 (2008).

Turner, J. D. et al. Macrofilaricidal activity after doxycycline only treatment of Onchocerca volvulus in an area of Loa loa co-endemicity: a randomized controlled trial. PLoS Negl. Trop. Dis. 4, e660 (2010).

Taylor, M. J. et al. Macrofilaricidal activity after doxycycline treatment of Wuchereria bancrofti: a double-blind, randomised placebo-controlled trial. Lancet 365, 2116–2121 (2005).

Walker, M. et al. Therapeutic efficacy and macrofilaricidal activity of doxycycline for the treatment of river blindness. Clin. Infect. Dis. 60, 1199–1207 (2015).

Debrah, A. Y. et al. Macrofilaricidal effect of 4 weeks of treatment with doxycycline on Wuchereria bancrofti. Trop. Med. Int. Health 12, 1433–1441 (2007).

Debrah, A. Y. et al. Macrofilaricidal activity in Wuchereria bancrofti after 2 weeks treatment with a combination of rifampicin plus doxycycline. J. Parasitol. Res. 2011, 1–9 (2011).

Debrah, A. Y. et al. Doxycycline leads to sterility and enhanced killing of female Onchocerca volvulus worms in an area with persistent microfilaridermia after repeated ivermectin treatment: a randomized, placebo-controlled, double-blind trial. Clin. Infect. Dis. 61, 517–526 (2015).

Johnston, K. L., Ford, L. & Taylor, M. J. M. Overcoming the challenges of drug discovery for neglected tropical diseases: the A· WOL experience. J. Biomol. Screen. 19, 335–343 (2014).

Clare, R. H. et al. Development and validation of a high-throughput anti-wolbachia whole-cell screen: a route to macrofilaricidal drugs against onchocerciasis and lymphatic filariasis. J. Biomol. Screen. 20, 64–69 (2014).

Johnston, K. L. et al. Identification and prioritization of novel anti-Wolbachia chemotypes from screening a 10,000-compound diversity library. Sci. Adv. 36, 1–11 (2017).

Johnston, K. L. et al. Repurposing of approved drugs from the human pharmacopoeia to target Wolbachia endosymbionts of onchocerciasis and lymphatic filariasis. Int. J. Parasitol. Drugs Drug Resist. 4, 278–286 (2014).

Oprea, T. I. & Gottfries, J. Chemography: the art of navigating in chemical space. J. Comb. Chem. 3, 157–166 (2001).

Rishton, G. M. Reactive compounds and in vitro false positives in HTS. Drug Discov. Today 2, 382–384 (1997).

Hann, M. et al. Strategic pooling of compounds for high-throughput screening. J. Chem. Inf. Comput. Sci. 39, 897–902 (1999).

Oprea, T. I. Property distribution of drug-related chemical databases. J. Comput. Aided Mol. Des. 14, 251–264 (2000).

Muegge, I. Selection criteria for drug-like compounds. Med. Res. Rev. 23, 302–321 (2003).

Baell, J. B. & Holloway, G. A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53, 2719–2740 (2010).

Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010).

Tarcsay, Á., Nyíri, K. & Keserű, G. M. Impact of lipophilic efficiency on compound quality. J. Med. Chem. 55, 1252–1260 (2012).

Aljayyoussi, G. et al. Short-course, high-dose rifampicin achieves Wolbachia depletion predictive of curative outcomes in preclinical models of lymphatic filariasis and onchocerciasis. Sci. Rep. 7, 210 (2017).

Sharma, R. et al. Minocycline as a re-purposed anti-Wolbachia macrofilaricide: superiority compared with doxycycline regimens in a murine infection model of human lymphatic filariasis. Sci. Rep. 6, 23458 (2016).

Sanz, L. M. et al. P. falciparum in vitro killing rates allow to discriminate between different antimalarial mode-of-action. PLoS ONE 7, e30949 (2012).

Brown, G. R. et al. A novel series of 4-piperidinopyridine and 4-piperidinopyrimidine inhibitors of 2,3-oxidosqualene cyclase-lanosterol synthase. J. Med. Chem. 43, 4964–4972 (2000).

Geoghegan, V. et al. Perturbed cholesterol and vesicular trafficking associated with dengue blocking in Wolbachia-infected Aedes aegypti cells. Nat. Commun. 8, 526 (2017).

Turner, J. D. et al. Wolbachia lipoprotein stimulates innate and adaptive immunity through toll-like receptors 2 and 6 to induce disease manifestations of filariasis. J. Biol. Chem. 284, 22364–22378 (2009).

Griffiths, K. G., Alworth, L. C., Harvey, S. B. & Michalski, M. L. Using an intravenous catheter to carry out abdominal lavage in the gerbil. Lab Anim. 39, 143–148 (2010).

McGarry, H. F., Egerton, G. L. & Taylor, M. J. Population dynamics of Wolbachia bacterial endosymbionts in Brugia malayi. Mol. Biochem. Parasitol. 135, 57–67 (2004).

Basarab, G. S. et al. Optimization of pyrrolamide topoisomerase II inhibitors toward identification of an antibacterial clinical candidate (AZD5099). J. Med. Chem. 57, 6060–6082 (2014).

Doyle, K. et al. Discovery of second generation reversible covalent dpp1 inhibitors leading to an oxazepane amidoacetonitrile based clinical candidate (AZD7986). J. Med. Chem. 59, 9457–9472 (2016).

Sander, T., Freyss, J., von Korff, M. & Rufener, C. DataWarrior: an open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 55, 460–473 (2015).