Diversification and spatial structuring in the mutualism between Ficus septica and its pollinating wasps in insular South East Asia
Tóm tắt
Interspecific interactions have long been assumed to play an important role in diversification. Mutualistic interactions, such as nursery pollination mutualisms, have been proposed as good candidates for diversification through co-speciation because of their intricate nature. However, little is known about how speciation and diversification proceeds in emblematic nursery pollination systems such as figs and fig wasps. Here, we analyse diversification in connection with spatial structuring in the obligate mutualistic association between Ficus septica and its pollinating wasps throughout the Philippines and Taiwan.
Ceratosolen wasps pollinating F. septica are structured into a set of three vicariant black coloured species, and a fourth yellow coloured species whose distribution overlaps with those of the black species. However, two black pollinator species were found to co-occur on Lanyu island. Microsatellite data on F. septica indicates the presence of three gene pools that broadly mirrors the distribution of the three black clades. Moreover, receptive fig odours, the specific message used by pollinating wasps to locate their host tree, varied among locations.
F. septica and its black pollinator clades exhibited similar geographic structuring. This could be due originally to geographic barriers leading to isolation, local adaptation, and finally co-structuring. Nevertheless, the co-occurrence of two black pollinator species on Lanyu island suggests that the parapatric distribution of the black clades is now maintained by the inability of migrating individuals of black pollinators to establish populations outside their range. On the other hand, the distribution of the yellow clade strongly suggests an initial case of character displacement followed by subsequent range extension: in our study system, phenotypic or microevolutionary plasticity has allowed the yellow clade to colonise hosts presenting distinct odours. Hence, while variation in receptive fig odours allows specificity in the interaction, this variation does not necessarily lead to coevolutionary plant-insect diversification. Globally, our results evidence evolutionary plasticity in the fig-fig wasp mutualism. This is the first documentation of the presence of two distinct processes in pollinating fig wasp diversification on a host species: the formation of vicariant species and the co-occurrence of other species over large parts of their ranges probably made possible by character displacement.
Tài liệu tham khảo
Hembry DH, Yoder JB, Goodman KR. Coevolution and the diversification of life. Am Nat. 2014;184:425–38.
Stuart YE, Campbell TS, Hohenlohe PA, Reynolds RG, Revell LJ, Losos JB. Rapid evolution of a native species following invasion by a congener. Science. 2014;346:463–6.
Grant PR, Grant BR. How and why species multiply: the radiation of Darwin's finches. New Jersey: Princeton University Press; 2008.
Schluter D, McPhail JD. Ecological character displacement and speciation in sticklebacks. Am Nat. 1992;140:85–108.
Stuart YE, Losos JB. Ecological character displacement: glass half full or half empty? Trends Ecol Evol. 2013;28:402–8.
Thompson JN. The coevolutionary process. Chicago: The University of Chicago Press; 1994.
Ramirez SR, Eltz T, Fujiwara MK, Gerlach G, Goldman-Huertas B, Tsutsui ND, et al. Asynchronous diversification in a specialized plant-pollinator mutualism. Science. 2011;333:1742–6.
Yokoyama J. Cospeciation of figs and fig-wasps: a case study of endemic species pairs in the Ogasawara Islands. Popul Ecol. 2003;45:249–56.
Kawakita A. Evolution of obligate pollination mutualism in the tribe Phyllantheae (Phyllanthaceae). Plant Spec Biol. 2010;25:3–19.
Cruaud A, Rønsted N, Chantarasuwan B, Chou LS, Clement WL, Couloux A, et al. An extreme case of plant-insect codiversification: figs and fig-pollinating wasps. Syst Biol. 2012;61:1029–47.
Cook JM, Segar ST. Speciation in fig wasps. Ecol Entomol. 2010;35:54–66.
Kiester AR, Lande R, Schemske DW. Models of coevolution and speciation in plants and their pollinators. Am Nat. 1984;124:220–43.
Yoder JB, Smith CI, Rowley DJ, Flatz R, Godsoe W, Drummond C, et al. Effects of gene flow on phenotype matching between two varieties of Joshua tree (Yucca brevifolia; Agavaceae) and their pollinators. J Evolution Biol. 2013;26:1220–33.
Bain A, Borges RM, Chevallier MH, Vignes H, Kobmoo N, Peng YQ, et al. Geographic structuring into vicariant species-pairs in a wide-ranging, high-dispersal plant-insect mutualism: the case of Ficus racemosa and its pollinating wasps. Evol Ecol. 2016;30:663–84. doi:10.1007/s10682-016-9836-5.
Hembry DH, Okamoto T, Gillespie RG. Repeated colonization of remote islands by specialized mutualists. Biol Lett. 2011;8:258–61.
Cruaud A, Rasplus JY, Jabbour-Zahab R, Genson G, Ungricht S. Testing the emergence of New Caledonia: fig wasp mutualism as a case study and a review of evidence. PLoS One. 2012;7:e30941.
Moe AM, Weiblen GD. Molecular divergence in allopatric Ceratosolen (Agaonidae) pollinators of geographically widespread Ficus (Moraceae) species. Ann Entomol Soc Am. 2010;103:1025–37.
Berg CC, Corner EJH. Moraceae (Ficus). In: HPNooteboom, editor. Flora Malesiana. Netherlands: Nationaal Herbarium Nederland, Universiteit Leiden branch. 2005. p. 1–730.
Conchou L, Cabioch L, Rodriguez LJV, Kjellberg F. Daily rhythm of mutualistic pollinator activity and scent emission in Ficus septica: ecological differentiation between co-occurring pollinators and potential consequences for chemical communication and facilitation of host speciation. PLoS One. 2014;9:e103581.
Hossaert-McKey M, Proffit M, Soler C, Chen C, Bessière JM, Schatz B, et al. How to be a dioecious fig: chemical mimicry between sexes matters only when both sexes flower synchronously. Sci Rep. 2016;6:21236.
Wiebes JT. Taxonomy and host plant preference of indo-Australian fig wasps of the genus Ceratosolen (Agaonidae). Tijdschr Entomol. 1963;106:1–112.
Lin RC, Yeung CKL, Fong JJ, Tzeng HY, Li SH. The lack of pollinator specificity in a dioecious fig tree: sympatric fig-pollinating wasps of Ficus septica in southern Taiwan. Biotropica. 2011;43:200–7.
Cruaud A, Jabbour-Zahab R, Genson G, Cruaud C, Couloux A, Kjellberg F, et al. Laying the foundations for a new classification of Agaonidae (hymenoptera: Chalcidoidea), a multilocus phylogenetic approach. Cladistics. 2010;26:359–87.
Cruaud A, Jabbour-Zahab R, Genson G, Couloux A, Peng YQ, Yang DR, et al. Out of Australia and back again: the world-wide historical biogeography of non-pollinating fig wasps (hymenoptera: Sycophaginae). J Biogeogr. 2011;38:209–25.
Garcia M, Bain A, Tzeng HY, Peng YQ, Chou LS, Kjellberg F. Portable microsatellite primers for Ficus (Moraceae). Am J Bot. 2012;99:e187–92.
Adams RP. Identification of essential oil components by gas chromatography/mass spectroscopy. 4th ed. USA: Allured Publishing Corporation; 2007.
Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics. 2012;28:2537–9.
Hardy OJ, Vekemans X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes. 2002;2:618–20.
Rousset F. GENEPOP'007: a complete re-implementation of the GENEPOP software for windows and Linux. Mol Ecol Resour. 2008;8:103–6.
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.
Earl DA. vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res. 2011;4:359–61.
Ramasamy RK, Ramasamy S, Bindroo BB, Naik VG. STRUCTURE PLOT: a program for drawing elegant STRUCTURE bar plots in user friendly interface. SpringerPlus. 2014;3:431.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Met. 1995;57:289–300.
Soler C, Hossaert-McKey M, Buatois B, Bessière JM, Schatz B, Proffit M. Geographic variation of floral scent in a highly specialized pollination mutualism. Phytochemistry. 2011;72:74–81.
Cornille A, Underhill JG, Cruaud A, Hossaert-McKey M, Johnson SD, Tolley KA, et al. Floral volatiles, pollinator sharing and diversification in the figwasp mutualism: insights from Ficus natalensis, and its two wasp pollinators (South Africa). Proc R Soc B. 2012;279:1731–9.
Wang G, Cannon CH, Chen J. Pollinator sharing and gene flow among closely related sympatric dioecious fig taxa. Proc R Soc B. 2016;283:20152963.
Hossaert-McKey M, Gibernau M, Frey JE. Chemosensory attraction of fig wasps to substances produced by receptive figs. Entomol Exp Appl. 1994;70:185–91.
Grison-Pigé L, Bessière JM, Hossaert-McKey M. Specific attraction of fig-pollinating wasps: role of volatile compounds released by tropical figs. J Chem Ecol. 2002;28:267–79.
Chen C, Song Q, Proffit M, Bessière JM, Li Z, Hossaert-McKey M. Private channel: a single unusual compound assures specific pollinator attraction in Ficus semicordata. Funct Ecol. 2009;23:941–50.
Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci. 2007;11:1633–44.
Soler CC, Proffit M, Bessiere JM, Hossaert-McKey M, Schatz B. Evidence for intersexual chemical mimicry in a dioecious plant. Ecol Lett. 2012;15:978–85.
Darwell CT. Al-Beidh S, cook JM. Molecular species delimitation of a symbiotic fig-pollinating wasp species complex reveals extreme deviation from reciprocal partner specificity. BMC Evol Biol. 2014;14:189.
Grandi G. Hyménoptères sycophiles récoltés aux iles Philippines par C.F. Baker, I. Agaonini. Philipp J Sci. 1927;33:309–29.
Darwell CT, Cook JM. Cryptic diversity in a fig wasp community – morphologically differentiated species are sympatric but cryptic species are allopatric. Mol Ecol. 2017;26:937–50.
Bain A, Tzeng HY, Wu WJ, Chou LS. Ficus (Moraceae) and fig wasps (Hymenoptera: Chalcidoidea) in Taiwan. Bot Stud. 2015;56:11.
Sutton TL, DeGabriel JL, Riegler M, Cook JM. Local coexistence and genetic isolation of three pollinator species on the same fig tree species. Heredity. 2017; doi:10.1038/hdy.2016.125.
Kerdelhué C, Hochberg ME, Rasplus JY. Active pollination of Ficus sur by two sympatric fig wasp species in West Africa. Biotropica. 1997;29:69–75.
Tian E, Nason JD, Machado C, Zheng L, Yu H, Kjellberg F. Lack of genetic isolation by distance, similar genetic structuring but different demographic histories in a fig-pollinating wasp mutualism. Mol Ecol. 2015;24:5976–91.
Liu M, Zhang JI, Chen Y, Compton SG, Chen XY. Contrasting genetic responses to population fragmentation in a coevolving fig and fig wasp across a mainland–island archipelago. Mol Ecol. 2013;22:4384–96.
Liu M, Rui Zhao R, Chen Y, Zhang J, Compton SG, Chen XY. Competitive exclusion among fig wasps achieved via entrainment of host plant flowering phenology. PLoS One. 2014;9:e97783. doi:10.1371/journal.pone.0097783.
Kjellberg F, Proffit M. Tracking the elusive history of diversification in plant-herbivorous insect-parasitoid food webs: insights from figs and fig-wasps. Mol Ecol. 2016;25:843–5.
Sutton TL, Riegler M, Cook JM. One step ahead: a parasitoid disperses farther and forms a wider geographic population than its fig wasp host. Mol Ecol. 2016;25:882–94.
Brown RM, Siler CD, Oliveros CH, Esselstyn JA, Diesmos AC, Hosner PA, et al. Evolutionary processes of diversification in a model island archipelago. Annu Rev Ecol Evol Syst. 2013;44:411–35.
Esselstyn JA, Maher SP, Brown RM. Species interactions during diversification and community assembly in an island radiation of shrews. PLoS One. 2011;6:e21885.
Azuma H, Harrison RD, Nakamura K, Su ZH. Molecular phylogenies of figs and fig-pollinating wasps in the Ryukyu and Bonin (Ogasawara) islands. Japan Genes Genet Syst. 2010;85:177–92.
Lin RC, Yeng CKL, Li SH. Drastic post-LGM expansion and lack of historical genetic structure of a subtropical fig-pollinating wasp (Ceratosolen sp. 1) of Ficus septica in Taiwan. Mol Ecol. 2008;17:5008–22.
Machado CA, Jousselin E, Kjellberg F, Compton SG, Herre EA. Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps. Proc R Soc Lond B. 2001;268:685–94.