Impact of the Alzheimer's Disease Neuroimaging Initiative, 2004 to 2014

Alzheimer's & Dementia - Tập 11 - Trang 865-884 - 2015
Michael W. Weiner1,2,3,4,5, Dallas P. Veitch1, Paul S. Aisen6, Laurel A. Beckett7, Nigel J. Cairns8,9, Jesse Cedarbaum10, Michael C. Donohue11, Robert C. Green12, Danielle Harvey7, Clifford R. Jack13, William Jagust14, John C. Morris9, Ronald C. Petersen15, Andrew J. Saykin16, Leslie Shaw17, Paul M. Thompson18, Arthur W. Toga19, John Q. Trojanowski20,21,22,23
1Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
2Department of Radiology University of California San Francisco, San Francisco, CA, USA
3Department of Medicine, University of California San Francisco, San Francisco, CA, USA
4Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
5Department of Neurology, University of California-San Francisco, San Francisco, CA, USA
6Department of Neurosciences, University of California–San Diego, La Jolla, CA, USA;
7Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
8Department of Neurology, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
9Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
10Neurology Early Clinical Development, Biogen Idec, Cambridge, MA, USA
11Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, San Diego, CA, USA
12Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
13Department of Radiology, Mayo Clinic, Rochester, MN, USA
14Helen Wills Neuroscience Institute and the School of Public Health, University of California Berkeley, Berkeley, CA, USA
15Department of Neurology, Mayo Clinic, Rochester, MN, USA
16Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
17Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
18Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Marina Del Rey, CA, USA
19Laboratory of Neuroimaging, Institute of Neuroimaging and Informatics, Keck School of Medicine of University of Southern California Los Angeles, CA, USA
20Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
21Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
22Alzheimer's Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
23Udall Parkinson's Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Tóm tắt

AbstractIntroduction

The Alzheimer's Disease Neuroimaging Initiative (ADNI) was established in 2004 to facilitate the development of effective treatments for Alzheimer's disease (AD) by validating biomarkers for AD clinical trials.

Methods

We searched for ADNI publications using established methods.

Results

ADNI has (1) developed standardized biomarkers for use in clinical trial subject selection and as surrogate outcome measures; (2) standardized protocols for use across multiple centers; (3) initiated worldwide ADNI; (4) inspired initiatives investigating traumatic brain injury and post‐traumatic stress disorder in military populations, and depression, respectively, as an AD risk factor; (5) acted as a data‐sharing model; (6) generated data used in over 600 publications, leading to the identification of novel AD risk alleles, and an understanding of the relationship between biomarkers and AD progression; and (7) inspired other public‐private partnerships developing biomarkers for Parkinson's disease and multiple sclerosis.

Discussion

ADNI has made myriad impacts in its first decade. A competitive renewal of the project in 2015 would see the use of newly developed tau imaging ligands, and the continued development of recruitment strategies and outcome measures for clinical trials.


Tài liệu tham khảo

10.1126/science.1072994 10.1111/j.1749-6632.2000.tb05577.x 10.1001/archneur.56.3.303 10.1111/j.1749-6632.1996.tb32599.x 10.1016/j.jalz.2010.03.007 10.1016/j.nic.2005.09.008 10.1212/WNL.0b013e3181cb3e25 10.1016/j.jalz.2014.11.001 10.1016/S1474-4422(09)70299-6 Weiner MW, 2012, The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception, Alzheimers Dement, 8, S1 10.1016/j.jalz.2013.05.1769 RocheF SvhaererJ GouttardS IstaceA BelaroussiB YuHJ BracoudL PachaiC De CarliC andthe Alzheimer's Neuroimaging Initiative.Accuracy of BMAS hippocampus segmentation using the harmonized hippocampal protocol.Alzheimer's Association International Conference Copenhagen Denmark.2014. BracoudL MarekK CedarbaumJ SchaererJ MendickS BermanF et al. andthe Alzheimer's Disease Neuroimaging Initiative.Predictive value of baseline hippocampal volumes and brain amyloid burden on atrophy rates for predementia Alzheimer's disease subjects with data from study CN156‐018 and ADNI‐1.Clinical Trials on Alzheimer's Disease (CTAD) conference San Diego CA.2013. BracoudL CoricV RocheF CedarbaumJ GouttardS LuoF et al.Longitudinal volumetric changes in a predementia AD study of Avagacestat (CN156‐018) as compared to ADNI‐1.Clinical Trials on Alzheimer's Disease (CTAD) conference Philadelphia PA.2013. RocheF SinghJ SchaererJ BelaroussiB GouttardS IstaceA YuHL FletcherE R BracoudL PachaiC andDecarliCReproducibility of intracranial and hippocampal volume quantification at 1.5T and 3T MRI: application to ADNI I.Alzheimer's Association International Conference Washington DC.2013. KleinG SampatM StaewenD ScottD LandauS andSuhyJA new look at FDG PET longitudinal analyses in Alzheimer's studies using a Freesurfer native space method.The 12th international conference on Alzheimer's and Parkinson's diseases Nice France.2015. Klein G, 2015, Comparative assessment of SUVR methods in amyloid cross‐sectional and longitudinal studies KleinG SampatM StaewenD ScottD andSuhyJHoffman phantom acquisition and analysis methods for qualification of PET centers in Multicenter Neurology Clinical Trials.Clinical Trials on Alzheimer's Disease (CTAD) conference Philadelphia PA.2014. KleinG LandauS ScottD SharoyanV Koeppe andSuhyJScanner resolution effects on quantitative measurements of Pittsburgh compound B and florbetapir.Alzheimer's Association International Conference Boston MA.2013. 10.1016/j.neurobiolaging.2013.09.039 10.1016/j.neuroimage.2009.09.069 10.1016/j.neuroimage.2010.04.006 10.1016/j.jalz.2013.09.014 10.1016/j.jalz.2013.07.003 10.1056/NEJMoa1304839 10.1212/WNL.0b013e318207b1b9 10.1126/scitranslmed.3002609 10.1056/NEJMp1302513 10.1126/scitranslmed.3007941 10.1016/j.jalz.2010.03.003 10.1002/jmri.21049 10.1016/j.neuroimage.2005.12.013 10.1016/j.jalz.2010.03.004 10.1016/j.neuroimage.2009.05.045 10.1016/j.neuroimage.2007.10.026 10.1118/1.3116776 10.1016/j.neuroimage.2009.11.006 10.1016/j.jalz.2012.06.004 10.1016/j.neuroimage.2010.03.018 10.1016/j.neurobiolaging.2010.04.011 10.1016/j.neuroimage.2011.01.077 10.1016/j.neuroimage.2010.12.067 10.1016/j.media.2013.02.006 10.1001/archneurol.2010.284 10.1016/j.neurobiolaging.2013.02.003 10.1001/jamaneurol.2013.1878 10.1037/a0031063 10.1016/j.jalz.2013.09.003 10.1002/ana.21610 10.1007/s00401-011-0808-0 10.1016/j.ymeth.2012.03.023 10.3233/JAD-132489 Guo LH, 2012, The National Institute on Aging‐Alzheimer's Association research criteria for mild cognitive impairment due to Alzheimer's disease: predicting the outcome, Eur Arch Psychiatry Clin Neurosci, 263, 325 10.1002/ana.23931 10.1212/WNL.0b013e318295d6cf 10.1001/jama.2014.850 10.1016/j.jalz.2010.03.001 10.1016/j.pneurobio.2011.09.005 RammohanKWTransformation of MS care in the 21st century. How NARCRMS will change the way we practice.6th Cooperative Meeting of the Consortium of Multiple Sclerosis Centers (CMSC) and the Americas Committee for Treatment and Research In Multiple Sclerosis (ACTRIMS).2014. Mormino EC, 2009, Episodic memory loss is related to hippocampal‐mediated beta‐amyloid deposition in elderly subjects, Brain, 132, 1310, 10.1093/brain/awn320 10.1016/S1474-4422(12)70291-0 Mouiha A, 2012, Toward a dynamic biomarker model in Alzheimer's disease, J Alzheimers Dis, 30, 91, 10.3233/JAD-2012-111367 10.1016/j.neuroimage.2012.07.059 10.1001/archneurol.2011.183 Donohue MC, 2014, Estimating long‐term multivariate progression from short‐term data, Alzheimers Dement, 10, S400 Schuff N, 2009, MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers, Brain, 132, 1067, 10.1093/brain/awp007 10.1093/brain/awq277 10.1007/s11682-012-9171-6 10.1016/j.neuroimage.2009.01.004 10.1016/j.neurobiolaging.2010.05.003 10.1016/j.jalz.2010.03.002 10.1016/j.neuroimage.2011.01.049 10.1016/j.neuroimage.2010.02.064 Wu X, 2010, Assessing the reliability to detect cerebral hypometabolism in probable Alzheimer's disease and amnestic mild cognitive impairment, J Neurosci Methods, 192, 277, 10.1016/j.jneumeth.2010.07.030 10.1016/j.neurobiolaging.2009.07.002 10.1007/s11682-012-9208-x Morra JH, 2009, Automated mapping of hippocampal atrophy in 1‐year repeat MRI data from 490 subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls, Neuroimage, 45, S3, 10.1016/j.neuroimage.2008.10.043 10.1007/s00330-009-1581-5 10.1002/hbm.20744 10.1016/j.neurobiolaging.2010.07.012 10.1148/radiol.10091402 10.1212/WNL.0b013e318281ccd3 10.1016/j.neurobiolaging.2010.03.015 10.1016/j.neuroimage.2009.02.015 10.1016/j.neurobiolaging.2010.05.001 10.1002/ana.21953 Davatzikos C, 2009, Longitudinal progression of Alzheimer's‐like patterns of atrophy in normal older adults: the SPARE‐AD index, Brain, 132, 2026, 10.1093/brain/awp091 10.1186/2051-5960-1-65 10.1007/s00401-013-1148-z 10.3233/JAD-130458 10.1001/archneurol.2012.1282 10.1371/journal.pone.0028092 10.1371/journal.pone.0034341 10.1097/WAD.0b013e31826d597a 10.1001/jamaneurol.2013.1321 10.1016/j.jalz.2012.11.009 10.1212/WNL.0b013e31826c1b9d TNir NJahanshad CRJack MWWeiner AWToga PMThompson et al.Small world network measures predict white matter degeneration in patients with early‐stage mild cognitive impairmentProc IEEE Int Symp Biomed Imaging.2012;1405–1408 10.1016/j.nicl.2013.07.006 10.1212/WNL.0b013e3181bc010c 10.1016/j.jalz.2010.08.230 10.1016/j.neuroimage.2013.04.048 10.2967/jnumed.112.109009 10.1016/j.neuroimage.2011.09.069 10.1016/j.neuroimage.2012.04.056 Liu F, 2013, Inter‐modality relationship constrained multi‐task feature selection for AD/MCI classification, Med Image Comput Comput Assist Interv, 16, 308 10.1016/j.neurobiolaging.2013.06.018 10.1371/journal.pone.0055246 10.1371/journal.pone.0047739 10.1002/hbm.21386 10.1016/j.neuroimage.2012.10.086 10.1007/s11682-012-9186-z Hobart J, 2013, Putting the Alzheimer's cognitive test to the test II: Rasch Measurement Theory, Alzheimers Dement, 9, S10 Hobart J, 2013, Putting the Alzheimer's cognitive test to the test I: traditional psychometric methods, Alzheimers Dement, 9, S4 Llano DA, 2010, Derivation of a new ADAS‐cog composite using tree‐based multivariate analysis: prediction of conversion from mild cognitive impairment to Alzheimer disease, Alzheimer Dis Assoc Disord, 25, 73, 10.1097/WAD.0b013e3181f5b8d8 10.1148/radiol.10100307 10.1016/j.neurobiolaging.2010.04.029 10.1371/journal.pone.0054483 10.1016/j.neuroimage.2008.07.013 10.1016/j.neurobiolaging.2010.04.024 10.1001/archneurol.2011.123 10.3389/fnagi.2013.00011 10.1016/j.jalz.2014.11.001 Rajagopalan P, 2013, TREM2 and neurodegenerative disease, N Engl J Med, 369, 1565 10.1073/pnas.1216206110 10.1038/ng.803 10.1038/ng.801 10.1016/j.neuroimage.2010.01.042 10.1038/mp.2010.123 10.1038/mp.2013.19 10.1007/s11682-013-9262-z 10.1371/journal.pone.0050640 10.1007/s11682-012-9196-x 10.1038/mp.2013.24 10.1038/nature12415 10.1016/j.neuroimage.2010.02.032 10.1001/archneurol.2010.179 10.1001/archgenpsychiatry.2011.155 Randall C, 2013, Cerebrospinal fluid biomarkers of Alzheimer's disease in healthy elderly, Front Biosci, 18, 1150, 10.2741/4170 10.1001/jamaneurol.2014.4829 10.1016/S1474-4422(14)70090-0 Jack CR, 2009, Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease, Brain, 132, 1355, 10.1093/brain/awp062 10.1002/ana.22315 Young AL, 2014, A data‐driven model of biomarker changes in sporadic Alzheimer's disease, Brain, 137, 2564, 10.1093/brain/awu176 10.1371/journal.pone.0047406 10.1007/s11682-012-9177-0 10.1212/WNL.0b013e3181af79e5 10.1212/WNL.0b013e3181af79fb 10.1016/j.neuroimage.2010.06.013 10.1016/j.neuroimage.2011.01.008 10.1016/j.neuroimage.2013.09.015 10.1016/j.neurobiolaging.2010.04.025 Cedarbaum JM, 2013, Rationale for use of the Clinical Dementia Rating Sum of Boxes as a primary outcome measure for Alzheimer's disease clinical trials, Alzheimers Dement, 9, S45 10.1016/j.neurobiolaging.2012.03.006 10.1371/journal.pone.0006501 10.1371/journal.pone.0079771 10.1186/1471-2377-10-90 10.1016/j.neurobiolaging.2010.04.031 10.1371/journal.pone.0070269 10.1016/j.biopsych.2014.05.006 10.1038/ng.2250 10.1038/ng.2237 10.1038/ng.2802 10.1016/j.jalz.2012.04.007 10.1016/j.jalz.2013.03.001 10.1016/j.jalz.2010.03.005 10.1016/j.jalz.2010.06.007 10.1016/j.jalz.2010.03.009 10.1620/tjem.221.87 10.1001/archgenpsychiatry.2010.61 10.1136/jnnp.74.7.857 10.1111/j.1532-5415.2010.02977.x Khachaturian AS, 2014, Military risk factors for Alzheimer's dementia and neurodegenerative disease, Alzheimer's & dementia: the journal of the Alzheimer's Association, 10, S90 Weiner MW, 2014, Effects of traumatic brain injury and posttraumatic stress disorder on Alzheimer's disease in veterans, using the Alzheimer's Disease Neuroimaging Initiative, Alzheimers Dement, 10, S226 Kang JH, 2013, Association of cerebrospinal fluid beta‐amyloid 1‐42, T‐tau, P‐tau181, and alpha‐synuclein levels with clinical features of drug‐naive patients with early Parkinson disease, JAMA Neurol, 70, 1277 10.1038/nrd3822 10.1212/WNL.42.9.1681 10.1001/archneur.1995.00540250089017 10.1002/ana.410410106 10.1212/01.WNL.0000063311.58879.01 10.1212/01.WNL.0000115115.98960.37 Villemagne VL, 2014, In vivo tau imaging: obstacles and progress, Alzheimers Dement, 10, S254 10.1016/j.neuroimage.2008.07.022 10.1186/alzrt240 10.2967/jnumed.112.117341 Okamura N, 2014, Non‐invasive assessment of Alzheimer's disease neurofibrillary pathology using 18F‐THK5105 PET, Brain, 137, 1762, 10.1093/brain/awu064 10.3233/JAD-122059 10.3233/JAD-130098 10.1016/j.neuron.2013.07.037 10.1007/s00259-013-2681-7 10.1016/j.jalz.2013.08.003