Electron-phonon couplings and carrier mobility in graphynes sheet calculated using the Wannier-interpolation approach

Journal of Chemical Physics - Tập 141 Số 3 - 2014
Jinyang Xi1, Dong Wang1, Yuanping Yi2, Zhigang Shuai1
1Tsinghua University 1 MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, , 100084 Beijing, People's Republic of China
2Chinese Academy of Sciences 2 CAS Key Laboratory of Organic Solids, Institute of Chemistry, , 100190 Beijing, People's Republic of China

Tóm tắt

Electron-phonon couplings and charge transport properties of α- and γ-graphyne nanosheets were investigated from first-principles calculations by using the density-functional perturbation theory and the Boltzmann transport equation. Wannier function-based interpolation techniques were applied to obtain the ultra-dense electron-phonon coupling matrix elements. Due to the localization feature in Wannier space, the interpolation based on truncated space is found to be accurate. We demonstrated that the intrinsic electron-phonon scatterings in these two-dimensional carbon materials are dominated by low-energy longitudinal-acoustic phonon scatterings over a wide range of temperatures. In contrast, the high-frequency optical phonons play appreciable roles only at high temperature regimes. The electron mobilities of α- and γ-graphynes are predicted to be ∼104 cm2 V−1 s−1 at room temperature.

Từ khóa


Tài liệu tham khảo

2011, Rev. Mod. Phys., 83, 407, 10.1103/RevModPhys.83.407

2009, Science, 324, 1530, 10.1126/science.1158877

2005, Nature, 438, 197, 10.1038/nature04233

2005, Nature, 438, 201, 10.1038/nature04235

2011, Phys. Status Solidi B, 248, 1879, 10.1002/pssb.201046583

2012, Phys. Rev. Lett., 108, 225505, 10.1103/PhysRevLett.108.225505

2013, Phys. Rev. B, 87, 075453, 10.1103/PhysRevB.87.075453

2012, Phys. Rev. Lett., 108, 086804, 10.1103/PhysRevLett.108.086804

2012, Phys. Rev. B, 86, 115435, 10.1103/PhysRevB.86.115435

1987, J. Chem. Phys., 87, 6687, 10.1063/1.453405

2011, ACS Nano, 5, 2593, 10.1021/nn102472s

2011, Appl. Phys. Lett., 98, 173102, 10.1063/1.3583507

2012, Nanoscale, 4, 3990, 10.1039/c2nr12026g

2010, Chem. Commun., 46, 3256, 10.1039/b922733d

2013, J. Phys. Chem. Lett., 4, 1443, 10.1021/jz4005587

2012, Nanoscale, 4, 4348, 10.1039/c2nr30585b

2009, J. Am. Chem. Soc., 131, 17728, 10.1021/ja907528a

2009, Sci. China Ser. B: Chem., 52, 1646, 10.1007/s11426-009-0244-3

1950, Phys. Rev., 80, 72, 10.1103/PhysRev.80.72

2008, Phys. Rev. Lett., 101, 096802, 10.1103/PhysRevLett.101.096802

2009, Solid State Commun., 149, 1080, 10.1016/j.ssc.2009.02.042

2009, Phys. Rev. Lett., 102, 136808, 10.1103/PhysRevLett.102.136808

V. Perebeinos and P. Avouris, “Current saturation and surface polar phonon scattering in graphene,” preprint arXiv:0910.4665 (2009).

2010, Phys. Rev. B, 81, 121412, 10.1103/PhysRevB.81.121412

2012, Phys. Rev. B, 85, 115317, 10.1103/PhysRevB.85.115317

2011, Phys. Rev. B, 83, 161402, 10.1103/PhysRevB.83.161402

2007, Phys. Rev. B, 76, 165108, 10.1103/PhysRevB.76.165108

2012, Phys. Rev. Lett., 109, 126407, 10.1103/PhysRevLett.109.126407

2012, Phys. Rev. B, 86, 075445, 10.1103/PhysRevB.86.075445

2001, Rev. Mod. Phys., 73, 515, 10.1103/RevModPhys.73.515

M. Wierzbowska, S. de Gironcoli, and P. Giannozzi, “Origins of low- and high-pressure discontinuities of Tc in niobium,” preprint arXiv:cond-mat/0504077 (2005).

1981, The Electron-Phonon Interaction in Metals, Selected Topics in Solid State Physics

1972, Principles of the Theory of Solids

2012, Rev. Mod. Phys., 84, 1419, 10.1103/RevModPhys.84.1419

2001, Phys. Rev. B, 65, 035109, 10.1103/PhysRevB.65.035109

2009, J. Phys.: Condens. Matter, 21, 395502, 10.1088/0953-8984/21/39/395502

1976, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188

2010, Comput. Phys. Commun., 181, 2140, 10.1016/j.cpc.2010.08.027

2008, Comput. Phys. Commun., 178, 685, 10.1016/j.cpc.2007.11.016

1964, Phys. Rev., 135, A698, 10.1103/PhysRev.135.A698

1983, Commun. Math. Phys., 91, 81, 10.1007/BF01206052

2009, Phys. Rev. B, 79, 115443, 10.1103/PhysRevB.79.115443

2004, Phys. Rev. Lett., 93, 185503, 10.1103/PhysRevLett.93.185503

2012, Phys. Chem. Chem. Phys., 14, 13385, 10.1039/c2cp42387a

2013, J. Phys. Chem. C, 117, 2175, 10.1021/jp3111869

2011, J. Phys. Chem. C, 115, 20466, 10.1021/jp206751m

2013, J. Chem. Phys., 138, 204704, 10.1063/1.4806069

1959, Phys. Rev. Lett., 2, 393, 10.1103/PhysRevLett.2.393

2013, Phys. Rev. B, 88, 121403, 10.1103/PhysRevB.88.121403

2000, Semiconductor Transport

2012, Phys. Rev. B, 85, 165440, 10.1103/PhysRevB.85.165440

2008, Phys. Rev. B, 77, 115449, 10.1103/PhysRevB.77.115449

2009, J. Phys.: Condens. Matter, 21, 344201, 10.1088/0953-8984/21/34/344201

1990, Phys. Rev. B, 41, 1278, 10.1103/PhysRevB.41.1278