Toxic Effects of Aluminum Oxide (Al2O3) Nanoparticles on Root Growth and Development in Triticum aestivum

Water, Air, and Soil Pollution - Tập 226 - Trang 1-13 - 2015
Fatma Yanık1, Filiz Vardar1
1Marmara University, Science and Arts Faculty, Department of Biology, Istanbul, Turkey

Tóm tắt

The development of nanotechnology has increased the amount of nanoparticles in the environment inducing pollution. In view of increasing amounts, their toxicity assessment becomes important. Aluminum oxide nanoparticles (Al2O3 NPs) have a wide range of applications in industry. The present study aims to reveal the time-dependent (24, 48, 72, 96 h) and dose-dependent (0, 5, 25, 50 mg/ml) effects of 13-nm-sized Al2O3 NPs on an agronomic plant wheat (Triticum aestivum L.) roots correlating with the appearance of various cellular stress responses. Al2O3 NPs reduced the root elongation by 40.2 % in 5 mg/ml, 50.6 % in 25 mg/ml, and 54.5 % in 50 mg/ml after 96 h. Histochemical analysis revealed lignin accumulation, callose deposition, and cellular damage in root cortex cells correlating the root elongation inhibition. Although the nanoparticle application decreased the total protein content with respect to control after 96 h, the peroxidase activity increased significantly which is considered to be one of the oxidative stress factors. Moreover, agarose gel results revealed that Al2O3 NPs induced DNA fragmentation being one of the important markers of programmed cell death. In conclusion, direct exposure to Al2O3 NPs leads to phytotoxicity significantly in wheat roots culminating in morphological, cellular, and molecular alterations.

Tài liệu tham khảo

An, L. H., & You, R. L. (2004). Studies on nuclear degeneration during programmed cell death of synergid and antipodal cells in Triticum aestivum. Sex Plant Reprod, 17, 195–201. Asztemborska, M., Steborowski, R., Kowalska, J., & Bystrzejewska-Piotrowska, G. (2015). Accumulation of aluminium by plants exposed to nano- and microsized particles of Al2O3. Int J Environ Res, 9, 109–116. Ball, P. (2002). Natural strategies for the molecular engineer. Nanotechnology, 13, 15–28. Barceló, A. R., Gómez-Ros, L. V., Gabaldón, C., López-Serrano, M., Pomar, F., Carrión, J. S., et al. (2004). Basic peroxidases: the gateway for lignin evolution. Phytochem Rev, 3, 61–78. Battke, F., Leopold, K., Maier, M., Schmidhalter, U., & Schuster, M. (2008). Palladium exposure of barley: uptake and effects. Plant Biol, 10, 272–276. Birecka, H., Briber, K. A., & Catalfamo, J. L. (1973). Comparative studies on tobacco pit and sweet potato root isoperoxidases in relation to injury, indolacetic acid and ethylene effects. Plant Physiol, 52, 43–49. Bonawitz, N. D., & Chapple, C. (2010). The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet, 44, 337–363. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248–254. Brunner, T. J., Wick, P., Manser, P., Spohn, P., Grass, R. N., Limbach, L. K., et al. (2006). In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol, 40, 4374–4381. Burklew, C. E., Ashlock, J., Winfrey, W. B., & Zhang, B. (2012). Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One, 7, e34783. Bystrzejewska-Piotrowska, G., Golimowski, J., & Urban, P. L. (2009). Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag, 29, 2587–259. Canõ-Delgado, A., Penfield, S., Smith, C., Catley, M., & Bevan, M. (2003). Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J, 34, 351–362. Chen, Q., Zhang, M., & Shen, S. (2010). Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke (Helianthus tuberosus L.). Acta Physiol Plant, 33, 273–278. Chinnamuthu, C. R., & Boopathi, P. M. (2009). Nanotechnology and agroecosystem. Madras Agricultural Journal, 96, 17–31. Di Salvatore, M., Carafa, A. M., & Carratu, G. (2008). Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: a comparison of two growth substrates. Chemosphere, 73, 1461–1464. Di Virgilio, A. L., Reigosa, M., Arnal, P. M., Lorenzo, F., & de Mele, M. (2010). Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. J Hazard Mater, 177, 711–718. Dogan, I., Ozyigit, I. I., & Demir, G. (2014). Influence of aluminum on mineral nutrient uptake and accumulation in Urtica pilulifera L. J Plant Nutr, 37, 469–481. Donaldson, K., Stone, V. & MacNee, W. (1999). The toxicology of ultrafine particles. In: R.L. Maynard & C.V. Howard (eds.), Particulate matter: properties and effects upon health (pp. 115–127). London: Oxford Bios. Doshi, R., Braida, W., Christodoulatos, C., Wazne, M., & O’Connor, G. (2008). Nano-aluminum: transport through sand columns and environmental effects on plant and soil communication. Environ Res, 106, 296–303. Fleischer, A., O’Neill, M. A., & Ehwald, R. (1999). The pore size of non-Graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol, 121, 829–838. Garcia-Saucedo, C., Field, J. A., Otero-Gonzalez, L., & Sierra-Alvarez, R. (2011). Low toxicity of HfO2, SiO2, Al2O3 and CeO2 nanoparticles to the yeast, Saccharomyces cerevisiae. J Hazard Mater, 192, 1572–1579. Ghodake, G., Seo, Y. D., & Lee, D. S. (2011). Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater, 186, 952–955. Ghosh, M., Bandyopadhyay, M., & Mukherjee, A. (2010). Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere, 81, 1253–1262. Ghosh, M., Manivannan, J., Sinhaa, S., Chakraborty, A., Mallick, S. K., Bandyopadhyay, M., et al. (2012). In vitro and in vivo genotoxicity of silver nanoparticles. Mutat Res, 749, 60–69. Hameed, A., Malık, S. A., İqbal, N., Arshad, R., & Farooq, S. (2004). A rapid (100 min) method for isolating high yield and quality DNA from leaves, roots and coleoptile of wheat (Triticum aestivum L.) suitable for apoptotic and other molecular studies. Int J Agric Biol, 2, 383–387. Handy, R. D., Owen, R., & Valsami-Jones, E. (2008). The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology, 17, 315–32. Hanemann, T., & Szabó, D. V. (2010). Polymer-nanoparticle composites: from synthesis to modern applications. Mater, 3, 3468–3517. Horst, W. J., Püschel, A. K., & Schmohl, N. (1997). Induction of callose formation is a sensitive marker for genotypic aluminum sensitivity in maize. Plant Soil, 192, 23–30. Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., & Watanabe, F. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3, 3221–3227. Kim, Y. J., Choi, H. S., Song, M. K., Youk, D. Y., Kim, J. H., & Ryu, J. C. (2009). Genotoxicity of aluminium oxide (Al2O3) nanoparticle in mammalian cell lines. Mol Cell Toxicol, 5, 172–178. Klaine, S. J., Alvarez, P. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., et al. (2008). Nanomaterials in the environment: behaviour, fate, bioavailability and effects. Environ Toxicol Chem, 27, 1825–1851. Krysanov, E., Pavlov, D. S., Demidova, T. B., & Dgebuadze, Y. Y. (2010). Effect of nanoparticles on aquatic organisms. Biol Bull, 37, 406–412. Kumari, M., Mukherjee, A., & Chandrasekaran, N. (2012). Effect of silver nanoparticle (SNPs) on protein and DNA content to tomato seed (Lycopersicon esculentum), cucumber (Cucumis sativus) and maize (Zea mays). Int J Hum Genet Med Biotechnol and Microbiol Stud, 1, 1. Larue, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A. M., et al. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.) influence of diameter and crystal phase. Sci Total Environ, 43, 197–208. Lee, C. W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y. C., & Braam, J. (2010). Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem, 29, 669–675. Lesniewska, J., Simeonova, E., Sikora, A., Mostowska, A., & Charzynska, M. (2000). Application of the comet assay in studies of programmed cell death (PCD) in plants. Acta Soc Bot Pol, 69, 101–107. Levitt, J. (1972). Responses of plants to environmental stresses (pp. 697). New York, London: Academic Press. Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut, 50, 243–50. Lin, D., & Xing, B. (2008). Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol, 42, 5580–5585. Matsumoto, H. (2000). Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev of Cytol, 200, 1–46. Mazumdar, H., & Ahmed, G. U. (2011). Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int J of Chem Tech Res, 3, 1494–1500. Miralles, P., Church, T. L., & Harris, A. T. (2012). Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol, 46, 9224–9239. Mittler, R., & Lam, E. (1997). Pathogen-induced programmed cell death in tobacco. Plant Mol Biol, 34, 209–221. Munzuroglu, O., & Geckil, H. (2002). Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch Environ Contam Toxicol, 43, 203–213. Nair, P. M. G., & Chung, I. M. (2014). Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification and molecular level changes. Environ Sci Pollut Res, 21, 12709–22. Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., et al. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17, 372–386. Nel, A., Xia, T., & Li, N. (2006). Toxic potential of materials at the nano levels. Science, 311, 622–627. O’Brien, I. E. W., Baguley, B. C., Murray, B. G., Morris, B. A. M., & Ferguson, I. B. (1998). Early stages of the apoptotic pathway in plant cells are reversible. Plant J, 13, 803–814. Oberdoörster, G., Oberdoörster, E., & Oberdoörster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect, 113, 823–839. Ozyigit, I. I., Dogan, I., Demir, G., Eskin, B., Keskin, M., & Yalcin, I. E. (2013). Distribution of some elements in Veronica scutellata L. from Bolu, Turkey: soil-plant interactions. Sains Malaysiana, 42, 1403–1407. Piršelova, B., Mistrikova, V., Libantova, J., Moravcikova, J., & Matusikova, I. (2012). Study on metal-triggered callose deposition in roots of maize and soybean. Biologia, 67, 698–705. Poborilova, Z., Opatrilova, R., & Babula, P. (2013). Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ Exp Bot, 91, 1–11. Remédios, C., Rosário, F. & Bastos, V. (2012). Environmental nanoparticles interactions with plants: morphological, physiological, and genotoxic aspects. Journal of Botany, 2012, 751686 Riahi-Madvar, A., Rezaee, F., & Jalali, V. (2012). Effects of alumina nanoparticles on morphological properties and antioxidant system of Triticum aestivum. Iran J of Plant Physiol, 3, 595–603. Rico, C. M., Morales, M. I., & McCreary, R. (2013). Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol, 47, 14110–14118. Roco, M. C. (2003). Broader societal issue of nanotechnology. J Nanoparticle Res, 5, 181–189. Ruffini Castiglione, M., & Cremonini, R. (2009). Nanoparticles and higher plant. Caryologia, 62, 161–165. Sadiq, I. M., Pakrashi, S., Chandrasekaran, N., & Mukherjee, A. (2011). Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nanoparticle Res, 13, 3287–3299. Salama, H. M. H. (2012). Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J of Biotechnol, 3, 190–197. Sarkar, P., Bosneaga, E., & Auer, M. (2009). Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot, 60, 3615–3635. Sass, J. E. (1951). Botanical microtechnique. Ames: Iowa State University Press. Schildknecht, P. H. P. A., & De CamposVidal, B. (2002). A role for the cell wall in Al3 + resistance and toxicity: crystallinity and availability of negative charges. Int Archives Biosci, 2000, 1087–1095. Sgherry, C. L. M., Pinzino, C., & Navari-Izzo, F. (1996). Sunflower seedlings subjected to increasing water stress by water deficit: changes in O2 − production related to the composition of thylakoid membranes. Physiol Plant, 96, 446–52. Sharma, P., Bhatt, D., Zaidi, M. G., Pardha Saradhi, P., Khanna, P. K., & Arora, S. (2012). Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol, 167, 2225–33. Smirnoff, N. (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol, 125, 27–58. Tronchet, M., Balagué, C., Kroj, T., Jouanin, L., & Roby, D. (2010). Cinnamyl alcohol dehydrogenases C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol Plant Pathol, 11, 83–92. Ünal, M., Vardar, F., & Aytürk, Ö. (2013). Callose in plant sexual reproduction. In M. Silva-Opps (Ed.), Current progress in biological research (pp 319–343). Croatia: In Tech. Vannini, C., Domingo, G., Onelli, E., Prinsi, B., Marsoni, M., Espen, L., et al. (2013). Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. Plos One, 8, e68752. Vardar, F., & Ünal, M. (2012). Ultrastructural aspects and programmed cell death in the tapetal cells of Lathyrus undulatus Boiss. Acta Biol Hung, 63, 52–66. Vardar, F., İsmailoğlu, I., İnan, D., & Ünal, M. (2011). Determination of stress responses induced by aluminum in maize (Zea mays). Acta Biol Hung, 62, 156–170. Wang, X. D., Sun, C., Gao, S. X., Wang, I. S., & Han, S. K. (2001). Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere, 44, 1711–1721. Wu, S. G., Huang, L., Head, J., Chen, D. R., Kong, I. C., & Tang, Y. J. (2012). Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J of Petroleum and Environmental Biotechnol, 4, 3. Xia, T., & Kovochich, M. (2009). Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano, 3, 3273–3286. Yang, L., & Watts, D. J. (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett, 158, 122–132. Yang, J. G., Okamoto, R., Lchino, S., Sarake, S., & Okido, M. (2006). A simple way for preparing antioxidation nano-copper powders. Chem Lett, 35, 648–649. Yin, L., Cheng, Y., Espinasse, B., Colman, B. P., Auffan, M., Wiesner, M., et al. (2011). More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol, 45, 2360–2367. Zaefyzadeh, M., Quliyev, R. A., Babayeva, S. M., & Abbasov, M. A. (2009). The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces. Turk J Biol, 33, 1–7.