Change in retinal structural anatomy during the preclinical stage of Alzheimer's disease

Cláudia Y. Santos1,2, Lenworth N. Johnson2,3, Stuart E. Sinoff4, Elena K. Festa5, William C. Heindel5, Peter J. Snyder1,2,6
1Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
2Lifespan Clinical Research Center, Rhode Island Hospital, Providence, RI, USA
3Department of Ophthalmology, Rhode Island Hospital & Alpert Medical School of Brown University, Providence, RI, USA
4Department of Ophthalmology, BayCare Medical Group, Clearwater, FL, USA
5Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
6Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA

Tóm tắt

AbstractIntroductionWe conducted a 27‐month longitudinal study of mid‐life adults with preclinical Alzheimer's disease (AD), using spectral domain optical coherence tomography to compare changes in volume and thickness in all retinal neuronal layers to those of age‐matched healthy control subjects.MethodsFifty‐six older adults (mean age = 65.36 years) with multiple risk factors for AD completed spectral domain optical coherence tomography retinal imaging and cognitive testing at baseline. Twenty‐seven months later, they completed the same examinations and an 18F‐florbetapir positron emission tomography imaging study.ResultsCompared to healthy control subjects, those in the preclinical stage of AD showed a significant decrease in macular retinal nerve fiber layer (mRNFL) volume, over a 27‐month follow‐up interval period, as well as a decrease in outer nuclear layer and inner plexiform layer volumes and thickness in the inferior quadrant. However, only the mRNFL volume was linearly related to neocortical positron emission tomography amyloid standardized uptake value ratio after controlling for any main effects of age (R2 = 0.103; ρ = 0.017). Furthermore, the magnitude of mRNFL volume reduction was significantly correlated with performance on a task of participants' abilities to efficiently integrate visual and auditory speech information (McGurk effect).DiscussionWe observed a decrease in mRNFL, outer nuclear layer, and inner plexiform layer volumes, in preclinical AD relative to controls. Moreover, the largely myelinated axonal loss in the RNFL is related to increased neocortical amyloid‐β accumulation after controlling for age. Volume loss in the RNFL, during the preclinical stage, is not related to performance on measures of episodic memory or problem solving. However, this retinal change does appear to be modestly related to relative decrements in performance on a measure of audiovisual integration efficiency that has been recently advanced as a possible early cognitive marker of mild cognitive impairment.

Tài liệu tham khảo

10.1038/nrn2283 10.1034/j.1600-0420.2002.800510.x Mahajan D., 2017, Can the retina be used to diagnose and plot the progression of Alzheimer's disease?, Acta Ophthalmol, 95, S259, 10.1111/j.1755-3768.2017.0T061 10.1016/j.neuroimage.2010.06.020 10.1371/journal.pone.0153830 10.1212/01.wnl.0000244490.07925.8b Blanks J.C., 1996, Retinal pathology in Alzheimer's disease. II. Regional neuron loss and glial changes in GCL, Neurobiol Aging, 13, 385, 10.1016/0197-4580(96)00009-7 10.1016/j.dadm.2015.03.001 10.1097/01.wno.0000204645.56873.26 10.1016/j.neulet.2010.06.006 Jindahra P., 2010, Optical coherence tomography of the retina: applications in neurology, Curr Opin Neurol, 18, 1864 Valenti D.A., 2010, Alzheimer's disease and glaucoma: imaging the biomarkers of neurodegenerative disease, Int J Alzheimer's Dis, 2010, 9 10.1007/s00417-017-3715-9 10.1186/s13195-017-0239-9 10.3233/JAD-160886 10.1016/j.dadm.2016.09.001 10.1371/journal.pone.0162202 Trebbastoni A., 2016, Retinal nerve fibre layer thickness changes in Alzheimer's disease: results from a 12‐month prospective case series, Neurosci Lett, 629, 165, 10.1016/j.neulet.2016.07.006 10.1016/j.dadm.2015.01.004 10.1111/aos.12977 10.1177/1533317515628053 10.3906/sag-1406-145 10.3906/sag-1405-114 Cesareo M., 2015, Association between Alzheimer's disease and glaucoma: a study based on Heidelberg retinal tomography and frequency doubling technology perimetry, Front Neurosci, 9, 479, 10.3389/fnins.2015.00479 Salobrar‐Garcia E., 2015, Analysis of retinal peripapillary segmentation in early Alzheimer's disease patients, Biomed Res Int, 2015, 636548, 10.1155/2015/636548 10.1002/ana.24548 Shi Z., 2016, The utilization of retinal nerve fiber layer thickness to predict cognitive deterioration, J Alzheimers Dis, 49, 399, 10.3233/JAD-150438 10.3233/JAD-160067 10.1007/s10072-014-2055-3 10.1016/j.archger.2014.10.011 10.3233/JAD-141659 Kromer R., 2014, Detection of retinal nerve fiber layer defects in Alzheimer's disease using SD‐OCT, Front Psychiatry, 25, 22 10.1111/aos.12374 10.1167/iovs.13-12046 10.1097/WNO.0b013e318267fd5f 10.2174/156720512802455340 10.1016/j.clineuro.2011.02.014 Chi Y., 2010, The investigation of retinal nerve fiber loss in Alzheimer's disease, Zhonghua Yan Ke Za Zhi, 46, 134 10.1016/j.neulet.2007.02.090 10.1167/iovs.06-1029 10.1016/S1388-2457(01)00620-4 10.1034/j.1600-0420.2001.079002187.x 10.1111/j.1600-0420.1996.tb00090.x 10.1016/j.ophtha.2006.08.046 10.1016/j.jalz.2011.03.008 10.1016/j.jalz.2011.03.003 Moreno R.T., 2013, Retinal nerve fiber layer thinning in dementia associated with Parkinson's disease, dementia with Lewy bodies, and Alzheimer's disease, J Alzheimers Dis, 34, 659, 10.3233/JAD-121975 10.1080/0361073X.2013.808109 10.1016/j.dadm.2016.07.004 10.2174/1567205011666140131114418 10.1016/j.jalz.2005.09.004 Fredrickson A., 2008, The use of effect sizes to characterize the nature of cognitive change in psychopharmacological studies: an example with scopolamine, Hum Psychopharmacol, 23, 1, 10.1002/hup.942 10.1093/arclin/acr039 Ames D., 2012, Short term stability of verbal memory impairment in mild cognitive impairment and Alzheimer's disease measured using the International Shopping List Test, J Clin Exp Neuropsychol, 34, 853, 10.1080/13803395.2012.689815 10.1023/A:1023832305702 10.1111/j.1749-6632.1991.tb00187.x 10.1016/j.bbadis.2011.07.009 10.1212/WNL.0b013e3182661f4d Nir T.M., 2015, Connectivity network measures predict volumetric atrophy in mild cognitive impairment, Neurobiol Aging, 36, S113, 10.1016/j.neurobiolaging.2014.04.038 10.3233/JAD-161062 10.1016/j.jalz.2014.01.009 10.1016/j.jalz.2011.03.005 10.1016/j.neurobiolaging.2015.07.009 Maruff P., 2013, Clinical utility of the Cogstate Brief Battery in identifying cognitive impairment in mild cognitive impairment and Alzheimer's disease, BMC Psychol, 1, 1, 10.1186/2050-7283-1-30 10.1111/aos.13257 10.1016/j.jfo.2017.06.003 10.1097/IAE.0000000000001509 Cacciamani A., 2017, Correlation between outer retinal thickening and retinal function impairment in patients with idiopathic epiretinal membranes [published online ahead of print November 28, 2017], Retina 10.1001/jama.2010.2008 10.1159/000446857 10.1007/s11065-014-9272-7 Thomas E., 2008, Specific impairments in visual spatial working memory following low dose scopolamine challenge in healthy older adults, Neuropsychology, 46, 2476, 10.1016/j.neuropsychologia.2008.04.010 10.1016/j.acn.2007.01.018 10.1371/journal.pone.0021688 10.3758/BRM.41.4.1190 10.1017/S1041610292000991 10.1038/264746a0 Hood D.C., 2010, Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography, J Glaucoma, 17, 519, 10.1097/IJG.0b013e3181629a02 10.1167/iovs.06-1332 10.1016/j.ophtha.2009.12.036 10.1016/j.ophtha.2011.01.058 Langenegger S.J., 2011, Reproducibility of retinal nerve fiber layer thickness measurements using the Eye Tracker and the retest function of SPECTRALIS SD‐OCT in glaucomatous and healthy control eyes, IOVS, 52, 3338 10.1016/j.ophtha.2011.10.010 10.1016/0197-4580(96)00010-3 10.1016/S0161-6420(90)32621-0 10.1016/j.ophtha.2013.12.023 10.1212/WNL.45.1.68 Mutlu U., 2017, Retinal neurodegeneration optical coherence tomography and risk of dementia and stroke, Alzheimers Assoc, 13, 1014 10.1016/j.jalz.2016.06.575 10.1002/ana.410250506 Oishi A., 2017, Longitudinal change of outer nuclear layer after retinal pigment epithelial tear secondary to age‐related macular degeneration [published online ahead of print May 10, 2017], Retina 10.1167/iovs.16-20020 10.1016/S1474-4422(17)30278-8 10.1212/WNL.0000000000004736 10.1155/2016/8503859 10.2174/1871524915666150319123015 Fortunate B., 2013, Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma, IOVS, 54, 5653 Fortunate B., 2015, Relating retinal ganglion cell function and retinal nerve fiber layer (RNFL) retardance to progressive loss of RNFL thickness and optic nerve axons in experimental glaucoma, IOVS, 56, 3936 10.1364/AO.36.002273