Molecular basis for resistance to silver cations in Salmonella

Nature Medicine - Tập 5 Số 2 - Trang 183-188 - 1999
Amit Gupta1, Kazuaki Matsui2, Jeng‐Fan Lo2, Simón Silver2
1Department of Microbiology and Immunology, University of Illinois at Chicago 60612-7344, USA.
2Department of Microbiology & Immunology, University of Illinois at Chicago, Chicago, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gupta, A. & Silver, S. Silver as a biocide: will resistance become a problem? Nature Biotechnol. 16, 888 (1998).

Silver, S., Gupta, A. Matsui, K. & Lo, J.–F. Resistance to Ag(I) cations in bacteria: environments, genes and proteins. Metal Based Drugs (in the press).

George, N., Faoagali, J. & Muller, M. SilvazineTM (silver sulfadiazine and chlorhexidine) activity against 200 clinical isolates. Burns 23, 493–495 (1997).

Modak, S. M., Sampath, L. & Fox, C.L. Jr. Combined topical use of silver sulfadiazine and antibiotics as a possible solution to bacterial resistance in burn wounds. J. Burn Care Rehabil. 9, 359– 363 (1988).

Pruitt, B.A. Jr., McManus, A.T., Kim, S.H. & Goodwin, C.W. Burn wound infections: current status. World J. Surg. 22, 135–145 (1998).

Chu, C.S., McManus, A.T., Matylevich, N.P., Mason, A.D. Jr, & Pruitt, B.A. Jr. Enhanced survival of autoepidermal–allodermal composite grafts in allosensitized animals by use of silver nylon dressings and direct current. J. Trauma 39, 273–278 (1995) .

Sampath, L.A., Chowdhury, N., Caraos, L. & Modak, S.M. Infection resistance of surface modified catheters with either short–lived or prolonged activity. J. Hosp. Infect. 30, 201–210 (1995).

Greenfeld, J.I. et al. Decreased bacterial adherence and biofilm formation on chlorhexidine and silver sulfadiazine–impregnated central venous catheters implanted in swine. Crit. Care Med. 23, 894– 900 (1995).

Gabriel, M.M., Mayo, M.S., May, L.L., Simmons, R.B. & Ahearn, D.G. In vitro evaluation of the efficacy of a silver–coated catheter. Curr. Microbiol. 33, 1– 5 (1996).

McHugh, S.L., Moellering, R.C., Hopkins, C.C. & Swartz, M.N. Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin. Lancet i, 235– 240 (1975).

Annear, D.I., Mee, B.J. & Bailey, M. Instability and linkage of silver resistance, lactose fermentation and colony structure in Enterobacter cloacae. J. Clin. Path. 29, 441–443 (1976).

Bridges, K., Kidson, A., Lowbury, E.J.L. & Wilkins, M.D. Gentamicin– and silver–resistant Pseudomonas. Brit. Med. J. 1, 446–449 (1979).

Silver, S. & Phung, L.T. Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50, 753–789 (1996).

Silver, S. Genes for all metals—a bacterial view of the Periodic Table. J. Indust. Microbiol. Biotech. 20, 1– 12 (1998).

Hobman, J.L. & Brown, N.L. in Metal Ions in Biological Systems Vol. 34 (eds. Sigel, A. & Sigel, H.) 527– 568 (Marcel Dekker, New York, 1997).

Summers, A.O. Untwist and shout: a heavy metal–responsive transcriptional regulator. J. Bacteriol. 174, 3097– 3101 (1992).

Gupta, A., Maynes, M. & Silver, S. The effects of halides on plasmid silver resistance in Escherichia coli. Appl. Environ. Microbiol. 64, 5042–5045 (1998).

Brown, N.L., Barrett, S.R., Camakaris, J., Lee, B.T. O. & Rouch, D.A. Molecular genetics and transport analysis of the copper–resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol. Microbiol. 17, 1153–1166 (1995).

Hoch, J.A. & Silhavy, T.J. (eds.) Two–Component Signal Transduction (ASM, Washington, DC, 1995).

Rouch, D.A. & Brown, N.L. Copper–inducible transcriptional regulation at two promoters in the Escherichia coli copper resistance determinant pco. Microbiology 143, 1191– 1202 (1997).

Blattner, F.R. et al. The complete genome sequence of Escherichia coli K–12. Science 277, 1453–1474 (1997).

Rudd, K.E. Linkage map of Escherichia coli K–12, Edition 10: The physical map. Microbiol. Mol. Biol. Rev. 62, 985– 1019 (1998).

van der Lelie, D. et al. Two–component regulatory system involved in transcriptional control of heavy– metal homoeostasis in Alcaligenes eutrophus. Mol. Microbiol. 23, 493–503 (1997).

Nies, D. H. & Silver, S. Ion efflux systems involved in bacterial metal resistances. J. Indust. Microbiol. 14, 186–199 (1995).

Nies, D. H. The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation–proton antiporter in Escherichia coli. J. Bacteriol. 177, 2707– 2712 (1995).

Paulsen, I.T., Park, J.H., Choi, P.S. & Saier, M.H. Jr. A family of gram–negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from gram–negative bacteria. FEMS Microbiol Lett. 156, 1– 8 (1997).

Solioz, M. & Vulpe, C. CPx–type ATPASE: a class of P–type ATPASE that pump heavy metals. Trends Biochem. Sci. 21, 237–241 (1996).

Trenor III, C., Lin, W. & Andrews, N.C. Novel bacterial P–type ATPases with histidine–rich heavy–metal–associated sequences. Biochem. Biophys. Res. Commun. 205, 1644–1650 (1994).

Li, X. Z., Nikaido, H. & Williams, K. E. Silver–resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J. Bacteriol. 179, 6127– 6132 (1997).

Solioz, M. & Odermatt, A. Copper and silver transport by CopB–ATPase in membrane vesicles of Enterococcus hirae. J. Biol. Chem. 270, 9217–9221 (1995).

Ausubel, F.M., et al. (eds.) Current Protocols in Molecular Biology (John Wiley & Sons, New York, 1998).

Rech, S., Wolin, C. & Gunsalus, R.P. Properties of the periplasmic ModA molybdate–binding protein of Escherichia coli. J. Biol. Chem. 271, 2557–2562 (1996).