Anisotropic magnetic entropy change in RFeO3 single crystals(R = Tb, Tm, or Y)

Scientific Reports - Tập 6 Số 1
Ya-Jiao Ke1, Xiang-Qun Zhang1, Yue Ma1, Zhao‐Hua Cheng1
1State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China

Tóm tắt

Abstract

Compared with traditional gas-compression/expansion refrigeration, magnetic refrigeration based on magnetocaloric effect (MCE) exhibits the advantages of high energy efficiency and environment friendliness. Here, we created large MCE in RFeO3(R = Tb or Tm) single crystals by the magnetization vector rotation of single crystal with strong magnetocrystalline anisotropy (MCA), rather than merely via the order-disorder magnetic phase transition or magnetic structural transition. Owing to the difference in charge distribution of 4f-electrons between Tb3+  and Tm3+ions, the rotating field entropy with different signs, −ΔSMR = 17.42 J/kg K, and –ΔSMR = −9.01 J/kg K are achieved at 9 K and 17 K for TbFeO3 and TmFeO3single crystals frombaxis tocaxis, at 50 kOe, respectively. The finding of the large anisotropic MCE not only advances our understanding of the anisotropy of MCE, but also extends the application for single crystals to magnetic refrigeration.

Từ khóa


Tài liệu tham khảo

Pecharsky, V. K., Gschneidner, K. A. & Giant, J. Magnetocaloric Effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494 (1997).

Provenzano, V., Shapiro, A. J. & Shull, R. D. Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature 429, 853 (2004).

Hu, F. X., Shen, B. G., Sun, J. R. & Wu, G. H. Large magnetic entropy change in a Heusler alloy Ni52.6Mn23.1Ga24.3 single crystal. Phys. Rev. B 64, 132412 (2001).

Krenke, T. et al. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat. Mater. 4, 450–454 (2005).

Tegus, O., Brück, E., Buschow, K. H. J. & Boer, F. R. d. Transition-metal-based magnetic refrigerantsfor room-temperature applications. Nature 415, 150–152 (2002).

Hu, F. X. et al. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 . Appl. Phys. Lett. 78, 3675 (2001).

Shen, B. G. et al. Recent Progress in Exploring Magnetocaloric Materials. Adv. Mater. 21, 4545–4564 (2009).

Guo, Z. B. et al. Large Magnetic Entropy Change in Perovskite-Type Manganese Oxides. Phys. Rev. Lett. 78, 1142 (1997).

Phan, M.-H. & Yu, S.-C. Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2007).

GschneidnerJr, K. A., Pecharsky, V. K. & Tsokol, A. O. Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005).

De Campos, A. et al. Ambient pressure colossal magnetocaloric effect tuned by composition in Mn1-xFexAs. Nat. Mater. 5, 802–804 (2006).

Morellon, L. et al. Pressure Enhancement of the Giant Magnetocaloric Effect in Tb5Si2Ge2 . Phys. Rev. Lett. 93, 137201 (2004).

Gama, S. et al. Pressure-Induced Colossal Magnetocaloric Effect in MnAs. Phys. Rev. Lett. 93, 237202 (2004).

Sun, Y. et al. Tuning of magnetocaloric effect in a La0.69Ca0.31MnO3 single crystal by pressure. Appl. Phys. Lett. 88, 102505 (2006).

Mañosa, L. et al. Giant solid-state barcaloric effect in the Ni-Mn-In magnetic shape-memory alloys. Nat. Mater. 9, 478–481 (2010).

Mosca, D. H., Vidal, F. & Etgens, V. H. Strain Engineering of the Magnetocaloric Effect in MnAs Epilayers. Phys. Rev. Lett. 101, 125503 (2008).

Moya, X. et al. Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain. Nat. Mater. 12, 52–58 (2013).

Mischenko, A. S. et al. Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3 . Science 311, 1270–1271 (2006).

Neese, B. et al. Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature. Science 321, 821–823 (2008).

Bonnot, E. et al. Elastocaloric Effect Associated with the Martensitic Transition in Shape-Memory Alloys. Phys. Rev. Lett. 100, 125901 (2008).

Liu, J. et al. Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11, 620 (2012).

Brück, E. Magnetocaloric Refrigeration at Ambient temperature. In Handbook of Magnetic Materials vol. 17 (Ed. Buschow, K. H. J. ) 235–291 (North Holland, Amsterdam, 2007).

Akulov, N. S. & Kirensky, L. W. A new magneto-caloric effect. J. Phys-USSR. 3, 31–34 (1940).

Kuz’min, M. D. & Tishin, A. M. Magnetic refrigerants for the 4.2–20 K region garnets or perovskites. J. Phys. D: Appl. Phys. 24, 2039 (1991).

Von Ranke, P. J. et al. Magnetocaloric effect in the RNi5(R = Pr, Nd, Gd, Tb, Dy, Ho, Er) series. Phys. Rev. B 70, 134428 (2004).

von Ranke, P. J. et al. The giant anisotropic magnetocaloric effect in DyAl2 . J. Appl. Phys. 104, 093906 (2008).

Nikitin, S. A. et al. Giant Rotating Magnetocaloric Effect in the Region of Spin-Reorientation Transition in the NdCo5 Single Crystal. Phys. Rev. Lett. 105, 137205 (2010).

Jin, J. L. et al. Giant anisotropy of magnetocaloric effect in TbMnO3 single crystals. Phys. Rev. B 83, 184431 (2011).

Midya, A. et al. Anisotropic magnetic properties and giant magnetocaloric effect in antiferromagnetic RMnO3 crystals (R = Dy, Tb, Ho and Yb). Phys. Rev. B 84, 235127 (2011).

Jin, J. L., Zhang, X. Q., Ge, H. & Cheng, Z. H. Rotating field entropy change in hexagonal TmMnO3 single crystal with anisotropic paramagnetic response. Phys. Rev. B 85, 214426 (2012).

Patra, M. et al. Magnetocaloric effect in RAl2 (R = Nd, Sm and Tm): Promising for cryogenic refrigeration close to liquid helium temperature. J. Alloys Compds. 531, 55–58 (2012).

Debnath, J. C. et al. Anisotropic and excellent magnetocaloric properties of La0.7Ca0.3MnO3 single crystal with anomalous magnetization. Mat. Sci. Eng. B 177, 48–53 (2012).

Huang, R. X. et al. Large rotating field entropy change in ErFeO3 single crystal with angular distribution contribution. Appl. Phys. Lett. 103, 162412 (2013).

Ke, Y. J. et al. Low field induced giant anisotropic magnetocaloric effect in DyFeO3 single crystal. Chin. Phys. B 24, 037501 (2015).

Zhang, H. et al. Giant rotating magnetocaloric effect induced by highly texturing in polycrystalline DyNiSi compound. Sci. Rep. 5, 11929 (2015).

White, R. L. Review of Recent Work on the Magnetic and Spectroscopic Properties of the Rare-Earth Orthoferrites. J. Appl. Phys. 40, 1061 (1969).

Tokunaga, Y., Taguchi, Y., Arima, T.-h. & Tokura, Y. Electric-field-induced generation and reversal of ferromagnetic moment in ferrites. Nat. Phys. 8, 838 (2012).

Kimel, A. V. et al. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3 . Nature 429, 850–853 (2004).

Kuz’min, M. D. & Tishin, A. M. Theory of Crystal-Field Effects in 3d-4f Intermetallic Compounds. In Handbook of Magnetic Materials, vol. 17 (Ed. Buschow, K. H. J. ) 149–233 (North Holland. Amsterdam. 2007).

Tejada, J. et al. Quantum Tunnelling of Antiferromagnetic Domain Walls in TbFeO3 Single Crystal. Europhys. Lett. 30, 227 (1995).

Gordon, J. D., Gorodetsky, G. & Hornreich, R. M. Magnetization studies of TbFeO3 . J. Magn. Magn. Mater. 3, 288–294 (1976).

Fiebig, M., Degenhardt, C. & Pisarev, R. V. Interaction of Frustrated Magnetic Sublattices in ErMnO3 . Phys. Rev. Lett. 88, 027203 (2002).

Przenioslo, R., Sosnowska, I., Loewenhaupt, M. & Taylor, A. Crystal field excitations of NdFeO3 . J. Magn. Magn. Mater. 140-144, 2151–2152 (1995).