Quantitative proteomic analysis shows differentially expressed HSPB1 in glioblastoma as a discriminating short from long survival factor and NOVA1 as a differentiation factor between low-grade astrocytoma and oligodendroglioma

BMC Cancer - Tập 15 - Trang 1-13 - 2015
Marcela Gimenez1, Suely Kazue Nagahashi Marie2,3, Sueli Oba-Shinjo2, Miyuki Uno2, Clarice Izumi1, João Bosco Oliveira4, Jose Cesar Rosa1
1Department Molecular and Cell Biology and Protein Chemistry Center, CTC-Center for Cell Therapy-CEPID-FAPESP-Hemocentro de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
2Department of Neurology, São Paulo Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
3Center for Studies of Cellular and Molecular Therapy (NETCEM) University of Sao Paulo, São Paulo, Brazil
4Instituto de Medicina Integral Prof. Fernando Figueira-IMIP, Pernambuco, Brazil

Tóm tắt

Gliomas account for more than 60 % of all primary central nervous system neoplasms. Low-grade gliomas display a tendency to progress to more malignant phenotypes and the most frequent and malignant gliomas are glioblastomas (GBM). Another type of glioma, oligodendroglioma originates from oligodendrocytes and glial precursor cells and represents 2–5 % of gliomas. The discrimination between these two types of glioma is actually controversial, thus, a molecular distinction is necessary for better diagnosis. iTRAQ-based quantitative proteomic analysis was performed on non-neoplastic brain tissue, on astrocytoma grade II, glioblastoma with short and long survival and oligodendrogliomas. We found that expression of nucleophosmin (NPM1), glucose regulated protein 78 kDa (GRP78), nucleolin (NCL) and heat shock protein 90 kDa (HSP90B1) were increased, Raf kinase inhibitor protein (RKIP/PEBP1) was decreased in glioblastoma and they were associated with a network related to tumor progression. Expression level of heat shock protein 27 (HSPB1/HSP27) discriminated glioblastoma presenting short (6 ± 4 months, n = 4) and long survival (43 ± 15 months, n = 4) (p = 0.00045). Expression level of RNA binding protein nova 1 (NOVA1) differentiated low-grade oligodendroglioma and astrocytoma grade II (p = 0.0082). Validation were done by Western blot, qRT-PCR and immunohistochemistry in a larger casuistry. Taken together, our quantitative proteomic analysis detected the molecular triad, NPM1, GRP78 and RKIP participating together with NCL and HSP27/HSPB1 in a network related to tumor progression. Additionally, two new important targets were uncovered: NOVA1 useful for diagnostic refinement differentiating astrocytoma from oligodendroglioma, and HSPB1/HSP27, as a predictive factor of poor prognosis for GBM.

Tài liệu tham khảo

Louis DN, Ohgaki H, Wiestler OD, Cavanee WK, editors. WHO classification of tumors of the central nervous system. Lyon: International Agency for Research on Cancer; 2007. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66. Ohgaki H, Kleihues P. Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci. 2009;100:2235–41. Gimenez M, Souza VC, Izumi C, Barbieri MR, Chammas R, Oba-Shinjo SM, et al. Proteomic analysis of low- to high-grade astrocytomas reveals an alteration of the expression level of raf kinase inhibitor protein and nucleophosmin. Proteomics. 2010;10(15):2812–21. Gimenez M, Marie SK, Oba-Shinjo SM, Uno M, da Silva R, Laure HJ, et al. Quantitative proteomic analysis and functional studies reveal that nucleophosmin is involved in cell death in glioblastoma cell line transfected with siRNA. Proteomics. 2012;12(17):2632–40. Ramão A, Gimenez M, Laure HJ, Izumi C, Vida RC, Oba-Shinjo S, et al. Changes in the expression of proteins associated with aerobic glycolysis and cell migration are involved in tumorigenic ability of two glioma cell lines. Proteome Sci. 2012;10(1):53. Okamoto Y, Di Patre PL, Burkhard C, et al. Population-based study on incidence, survival rates, and genetic alterations of low-grade diffuse astrocytomas and oligodendrogliomas. Acta Neuropathol (Berl). 2004;108(1):49–56. Bianco AM, Miura FK, Clara C, Almeida JR, Silva CC, Teixeira MJ, et al. Low-grade astrocytoma: surgical outcomes in eloquent versus non-eloquent brain areas. Arq Neuropsiquiatr. 2013;71(1):31–4. Kouwenhoven MC, Kros JM, French PJ, et al. 1p/19q loss within oligodendroglioma is predictive for response to first line temozolomide but not to salvage treatment. Eur J Cancer. 2006;42(15):2499–503. Hoang-Xuan K, Capelle L, Kujas M, et al. Temozolomide as initial treatment for adults with low-grade oligodendrogliomas or oligoastrocytomas and correlation with chromosome 1p deletions. J Clin Oncol. 2004;22(15):3133–8. Cairncross G, Macdonald D, Ludwin S, et al. Chemotherapy for anaplastic oligodendroglioma. National cancer institute of Canada clinical trials group. J Clin Oncol. 1994;12(10):2013–21. Van den Bent MJ, Kros JM, Heimans JJ, et al. Response rate and prognostic factors of recurrent oligodendroglioma treated with procarbazine, CCNU, and vincristine chemotherapy. Dutch neuro-oncology group. Neurology. 1998;51(4):1140–5. Van den Bent MJ. Guidelines for the treatment of oligodendroglioma: an evidence-based medicine approach. Forum (Genova). 2003;13(1):18–31. Kesari S, Schiff D, Drappatz J, La Frankie D, Doherty L, Macklin E, et al. Phase II study protracted daily temozolomide for low- grade gliomas in adults. Clinic Cancer Res. 2009;15(1):330–7. Cairncross G, Berkey B, Shaw E, et al. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: intergroup radiation therapy oncology group trial 9402. J Clin Oncol. 2006;24(18):2707–14. Capelle L, Oei P, Teoh H, Hamilton D, Palmer D, Low I, et al. Retrospective review of prognostic factors, including 1p19q deletion, in low-grade oligodendrogliomas and a review of recent published works. J Med Imaging Radiat Oncol. 2009;53:305–9. Giannini C, Scheithauer BW, Weaver AL, et al. Oligodendrogliomas: reproducibility and prognostic value of histologic diagnosis and grading. J Neuropathol Exp Neurol. 2001;60(3):248–62. Sasaki H, Zlatescu MC, Betensky RA, et al. Histopathological-molecular genetic correlations in referral pathologist-diagnosed low-grade “oligodendroglioma”. J Neuropathol Exp Neurol. 2002;61(1):58–63. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem. 2002;74(20):5383–92. Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003;75(17):4646–58. Valente V, Teixeira SA, Neder L, Okamoto OK, Oba-Shinjo SM, Marie SK, et al. Selection of suitable housekeeping genes for expression analysis in glioblastoma using quantitative RT-PCR. BMC Mol Biol. 2009;10:17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25 Suppl 4:402–8. Uno M, Oba-Shinjo SM, Silva Rd, Miura F, Clara CA, Almeida JR, Malheiros SM, Bianco AM, Brandt R, Ribas GC, Feres H, Dzik C, Rosemberg S, Stavale JN, Teixeira MJ, Marie SK. IDH1 mutations in a Brazilian series of Glioblastoma. Clinics (Sao Paulo). 2011;66(1):163–5 Uno M, Oba-Shinjo SM, Camargo AA, Moura RP, Aguiar PH, Cabrera HN, et al. Correlation of MGMT promoter methylation status with gene and protein expression levels in glioblastoma. Clinics (Sao Paulo). 2011;66(10):1747–55. Mallinjoud P, Villemin JP, Mortada H, Polay Espinoza M, Desmet FO, Samaan S, et al. Endothelial, epithelial, and fibroblast cells exhibit specific splicing programs independently of their tissue of origin. Genome Res. 2014;24(3):511–21. Xu X, Joh HD, Pin S, Schiller NI, Prange C, Burger PC, et al. Expression of multiple larger-sized transcripts for several genes in oligodendrogliomas: potential markers for glioma subtype. Cancer Lett. 2001;171(1):67–77. Arrigo AP, Gibert B. HspB1, HspB5 and HspB4 in human cancers: potent oncogenic role of some of their client proteins. Cancers (Basel). 2014;6(1):333–65. Garrido C, Ottavi P, Fromentin A, Hammann A, Arrigo AP, Chauffert B, et al. HSP27 as a mediator of confluence-dependent resistance to cell death induced by anticancer drugs. Cancer Res. 1997;57(13):2661–7. Kanagasabai R, Karthikeyan K, Vedam K, Qien W, Zhu Q, Ilangovan G. Hsp27 protects adenocarcinoma cells from UV-induced apoptosis by Akt and p21-dependent pathways of survival. Mol Cancer Res. 2010;8(10):1399–412. Marquez DC, Lee J, Lin T, Pietras RJ. Epidermal growth factor receptor and tyrosine phosphorylation of estrogen receptor. Endocrine. 2001;16(2):73–81. Park S, Yeung ML, Beach S, Shields JM, Yeung KC. RKIP downregulates B-Raf kinase activity in melanoma cancer cells. Oncogene. 2005;24(21):3535–40. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Rev Mol Cell Biol. 2011;12(1):21–35. Chen B, Tardell C, Higgins B, Packman K, Boylan JF, Niu H. BRAFV600E negatively regulates the AKT pathway in melanoma cell lines. PloS One. 2012;7(8), e42598. Okumura E, Fukuhara T, Yoshida H, Hanada Si S, Kozutsumi R, Mori M, et al. Akt inhibits Myt1 in the signalling pathway that leads to meiotic G2/M-phase transition. NatCell Biol. 2002;4(2):111–6. Hutchins JR, Toyoda Y, Hegemann B, Poser I, Heriche JK, Sykora MM, Augsburg M, Hudecz O, Buschhorn BA, Bulkescher J, Conrad C, Comartin D, Schleiffer A, Sarov M, Pozniakovsky A, Slabicki MM, Schloissnig S, Steinmacher I, Leuschner M, Ssykor A, Lawo S, Pelletier L, Stark H, Nasmyth K, Ellenberg J, Durbin R, Buchholz F, Mechtler K, Hyman AA, Peters JM. Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science (New York, N.Y.). 2010;328(5978):593–99. Wang SA, Li HY, Hsu TI, Chen SH, Wu CJ, Chang WC, et al. Heat shock protein 90 stabilizes nucleolin to increase mRNA stability in mitosis. J Biol Chem. 2011;286(51):43816–29. Maggi Jr LB, Kuchenruether M, Dadey DY, Schwope RM, Grisendi S, Townsend RR, et al. Nucleophosmin serves as a rate-limitingnuclear export chaperone for the mammalian ribosome. Mol Cellular Biol. 2008;28(23):7050–65. Rocchi P, Beraldi E, Ettinger S, Fazli L, Vessella RL, Nelson C, et al. Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Cancer Res. 2005;65(23):11083–93. Beck HC, Petersen J, Nielsen SJ, Morsczeck C, Jensen PB, Sehested M, et al. Proteomic profiling of human colon cancer cells treated with the histone deacetylase inhibitor belinostat. Electrophoresis. 2010;31(16):2714–21. Friedman MJ, Li S, Li XJ. Activation of gene transcription by heat shock protein 27 may contribute to its neuronal protection. J Biol Chem. 2009;284(41):27944–51. Tsou JH, Chang KY, Wang WC, Tseng JT, Su WC, Hung LY, et al. Nucleolin regulates c-Jun/Sp1-dependent transcriptional activation of cPLA2alpha in phorbol ester-treated non-small cell lung cancer A549 cells. Nucleic Acids Res. 2008;36(1):217–27. Sakaguchi M, Miyazaki M, Takaishi M, Sakaguchi Y, Makino E, Kataoka N, et al. S100C/A11 is a key mediator of Ca(2+)-induced growth inhibition of human epidermal keratinocytes. J Cell Biol. 2003;163(4):825–35. Ray S, Hou X, Zhou HE, Wang H, Das SK. Bip is a molecular link between the phase I and phase II estrogenic responses in uterus. Mol Endocrinol (Baltimore, Md.). 2006;20(8):1825–37. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, et al. Genome-wide analysis of estrogen receptor binding sites. Nature Gen. 2006;38(11):1289–97. Carvalho PO, Uno M, Oba-Shinjo SM, Rosemberg S, Wakamatsu A, da Silva CC, et al. Activation of EGFR signaling from pilocytic astrocytomas to glioblastomas. Int J Biol Markers. 2014;29(2):e120–8.