Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants

Blood - Tập 127 - Trang 1325-1335 - 2016
Ilyas Chachoua1,2, Christian Pecquet1,2, Mira El-Khoury3,4,5, Harini Nivarthi6, Roxana-Irina Albu1,2, Caroline Marty3,4,5, Vitalina Gryshkova1,2, Jean-Philippe Defour1,2, Gaëlle Vertenoeil1,2, Anna Ngo7, Ann Koay7, Hana Raslova3,4,5, Pierre J. Courtoy2, Meng Ling Choong7, Isabelle Plo3,4,5, William Vainchenker3,4,5, Robert Kralovics6, Stefan N. Constantinescu1,2
1Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
2Université Catholique de Louvain and de Duve Institute, Brussels, Belgium;
3INSERM, Unité Unité Mixte de Recherche 1170, Institut Gustave Roussy, Villejuif, France;
4Paris-Saclay, Unité Mixte de Recherche 1170, Institut Gustave Roussy, Villejuif, France;
5Gustave Roussy, Unité Mixte de Recherche 1170, Villejuif, France;
6CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
7Experimental Therapeutics Center, Singapore

Tóm tắt

Key Points Calreticulin mutants responsible for myeloproliferative neoplasms specifically activate the thrombopoietin receptor and in turn JAK2. Activation of the thrombopoietin receptor requires the glycan binding site and a novel C-terminal tail of the mutant calreticulin.

Tài liệu tham khảo

Vardiman, 2009, The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes., Blood, 114, 937, 10.1182/blood-2009-03-209262 Vainchenker, 2013, JAK/STAT signaling in hematological malignancies., Oncogene, 32, 2601, 10.1038/onc.2012.347 Cazzola, 2014, From Janus kinase 2 to calreticulin: the clinically relevant genomic landscape of myeloproliferative neoplasms., Blood, 123, 3714, 10.1182/blood-2014-03-530865 Vainchenker, 2011, New mutations and pathogenesis of myeloproliferative neoplasms., Blood, 118, 1723, 10.1182/blood-2011-02-292102 Klampfl, 2013, Somatic mutations of calreticulin in myeloproliferative neoplasms., N Engl J Med, 369, 2379, 10.1056/NEJMoa1311347 Nangalia, 2013, Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2., N Engl J Med, 369, 2391, 10.1056/NEJMoa1312542 Marty, 2014, Calr mutants retroviral mouse models lead to a myeloproliferative neoplasm mimicking an essential thrombocythemia progressing to a myelofibrosis [abstract]., Blood, 124, 10.1182/blood.V124.21.157.157 Marty, Expression of calreticulin mutants in mice induce a MPL-dependent thrombocytosis progressing to myelofibrosis for the type I mutant [published online ahead of print November 25, 2015]., Blood Cabagnols, 2015, Differential association of calreticulin type 1 and type 2 mutations with myelofibrosis and essential thrombocytemia: relevance for disease evolution., Leukemia, 29, 249, 10.1038/leu.2014.270 Pietra, 2015, Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms [published online ahead of print October 9, 2015]., Leukemia Staerk, 2011, Orientation-specific signalling by thrombopoietin receptor dimers., EMBO J, 30, 4398, 10.1038/emboj.2011.315 Royer, 2005, Janus kinases affect thrombopoietin receptor cell surface localization and stability., J Biol Chem, 280, 27251, 10.1074/jbc.M501376200 Albu, 2011, Extracellular domain N-glycosylation controls human thrombopoietin receptor cell surface levels., Front Endocrinol (Lausanne), 2, 71, 10.3389/fendo.2011.00071 Besancenot, 2010, A senescence-like cell-cycle arrest occurs during megakaryocytic maturation: implications for physiological and pathological megakaryocytic proliferation., PLoS Biol, 8, e1000476, 10.1371/journal.pbio.1000476 Pang, 2009, Interference RNA (RNAi)-based silencing of endogenous thrombopoietin receptor (Mpl) in Dami cells resulted in decreased hNUDC-mediated megakaryocyte proliferation and differentiation., Exp Cell Res, 315, 3563, 10.1016/j.yexcr.2009.06.020 da Costa Reis Monte-Mór, 2009, Constitutive JunB expression, associated with the JAK2 V617F mutation, stimulates proliferation of the erythroid lineage., Leukemia, 23, 144, 10.1038/leu.2008.275 Kohlhuber, 1997, A JAK1/JAK2 chimera can sustain alpha and gamma interferon responses., Mol Cell Biol, 17, 695, 10.1128/MCB.17.2.695 Mesaeli, 1999, Calreticulin is essential for cardiac development., J Cell Biol, 144, 857, 10.1083/jcb.144.5.857 Wood, 1997, Specificity of transcription enhancement via the STAT responsive element in the serine protease inhibitor 2.1 promoter., Mol Cell Endocrinol, 130, 69, 10.1016/S0303-7207(97)00075-0 Debili, 1996, Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow., Blood, 88, 1284, 10.1182/blood.V88.4.1284.bloodjournal8841284 Remy, 2006, A highly sensitive protein-protein interaction assay based on Gaussia luciferase., Nat Methods, 3, 977, 10.1038/nmeth979 Defour, 2013, Tryptophan at the transmembrane-cytosolic junction modulates thrombopoietin receptor dimerization and activation., Proc Natl Acad Sci USA, 110, 2540, 10.1073/pnas.1211560110 Courtoy, 1993, Analytical subcellular fractionation of endosomal compartments in rat hepatocytes., Subcell Biochem, 19, 29, 10.1007/978-1-4615-3026-8_2 Choong, 2013, Combination treatment for myeloproliferative neoplasms using JAK and pan-class I PI3K inhibitors., J Cell Mol Med, 17, 1397, 10.1111/jcmm.12156 Chou, 2006, Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies., Pharmacol Rev, 58, 621, 10.1124/pr.58.3.10 Michalak, 2009, Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum., Biochem J, 417, 651, 10.1042/BJ20081847 Huang, 2001, The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor., Mol Cell, 8, 1327, 10.1016/S1097-2765(01)00401-4 Tong, 2006, The membrane-proximal region of the thrombopoietin receptor confers its high surface expression by JAK2-dependent and -independent mechanisms., J Biol Chem, 281, 38930, 10.1074/jbc.M607524200 Drachman, 1999, Thrombopoietin signal transduction requires functional JAK2, not TYK2., J Biol Chem, 274, 13480, 10.1074/jbc.274.19.13480 Kollmann, 2015, MARIMO cells harbor a CALR mutation but are not dependent on JAK2/STAT5 signaling., Leukemia, 29, 494, 10.1038/leu.2014.285 Guglielmelli, Ruxolitinib is an effective treatment for CALR-positive patients with myelofibrosis [published online ahead of print August 25, 2015]., Br J Haematol Patel, 2015, Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib., Blood, 126, 790, 10.1182/blood-2015-03-633404 Passamonti, 2014, JAK inhibitor in CALR-mutant myelofibrosis., N Engl J Med, 370, 1168, 10.1056/NEJMc1400499 Bartalucci, 2013, Co-targeting the PI3K/mTOR and JAK2 signalling pathways produces synergistic activity against myeloproliferative neoplasms., J Cell Mol Med, 17, 1385, 10.1111/jcmm.12162 Bartalucci, 2013, Rationale for targeting the PI3K/Akt/mTOR pathway in myeloproliferative neoplasms., Clin Lymphoma Myeloma Leuk, 13, S307, 10.1016/j.clml.2013.07.011 Chen, 2010, Identification of the residues in the extracellular domain of thrombopoietin receptor involved in the binding of thrombopoietin and a nuclear distribution protein (human NUDC)., J Biol Chem, 285, 26697, 10.1074/jbc.M110.120956 Kapoor, 2004, Mutational analysis provides molecular insight into the carbohydrate-binding region of calreticulin: pivotal roles of tyrosine-109 and aspartate-135 in carbohydrate recognition., Biochemistry, 43, 97, 10.1021/bi0355286 Mondet, 2015, Endogenous megakaryocytic colonies underline association between megakaryocytes and calreticulin mutations in essential thrombocythemia., Haematologica, 100, e176, 10.3324/haematol.2014.118927 Seubert, 2003, Active and inactive orientations of the transmembrane and cytosolic domains of the erythropoietin receptor dimer., Mol Cell, 12, 1239, 10.1016/S1097-2765(03)00389-7 Matthews, 2011, Thrombopoietin receptor activation: transmembrane helix dimerization, rotation, and allosteric modulation., FASEB J, 25, 2234, 10.1096/fj.10-178673 Tefferi, 2014, Type 1 vs type 2 calreticulin mutations in primary myelofibrosis: differences in phenotype and prognostic impact., Leukemia, 28, 1568, 10.1038/leu.2014.83 Tefferi, 2014, Type 1 versus Type 2 calreticulin mutations in essential thrombocythemia: a collaborative study of 1027 patients., Am J Hematol, 89, E121, 10.1002/ajh.23743 Yoshida, 1998, A novel myeloid cell line, Marimo, derived from therapy-related acute myeloid leukemia during treatment of essential thrombocythemia: consistent chromosomal abnormalities and temporary C-MYC gene amplification., Cancer Genet Cytogenet, 100, 21, 10.1016/S0165-4608(97)00017-4 Rampal, 2014, Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis., Blood, 123, e123, 10.1182/blood-2014-02-554634 Lau, 2015, The JAK-STAT signaling pathway is differentially activated in CALR-positive compared with JAK2V617F-positive ET patients., Blood, 125, 1679, 10.1182/blood-2014-12-618074