Bacterial genome adaptation to niches: Divergence of the potential virulence genes in three Burkholderia species of different survival strategies

Springer Science and Business Media LLC - Tập 6 - Trang 1-13 - 2005
H Stanley Kim1, Mark A Schell2, Yan Yu1, Ricky L Ulrich3, Saul H Sarria1, William C Nierman1, David DeShazer3
1The Institute for Genomic Research, Rockville, USA
2Department of microbiology and plant pathology, University of Georgia, Athens, USA
3US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, USA

Tóm tắt

Two closely related species Burkholderia mallei (Bm) and Burkholderia pseudomallei (Bp) are serious human health hazards and are potential bio-warfare agents, whereas another closely related species Burkholderia thailandensis (Bt) is a non-pathogenic saprophyte. To investigate the genomic factors resulting in such a dramatic difference, we first identified the Bm genes responsive to the mouse environment, and then examined the divergence of these genes in Bp and Bt. The genes down-expressed, which largely encode cell growth-related proteins, are conserved well in all three species, whereas those up-expressed, which include potential virulence genes, are less well conserved or absent notably in Bt. However, a substantial number of up-expressed genes is still conserved in Bt. Bm and Bp further diverged from each other in a small number of genes resulting from unit number changes in simple sequence repeats (ssr) in the homologs. Our data suggest that divergent evolution of a small set of genes, rather than acquisition or loss of pathogenic islands, is associated with the development of different life styles in these bacteria of similar genomic contents. Further divergence between Bm and Bp mediated by ssr changes may reflect different adaptive processes of Bm and Bp fine-tuning into their host environments.

Tài liệu tham khảo

Dance DA: Ecology of Burkholderia pseudomallei and the interactions between environmental Burkholderia spp. and human-animal hosts. Acta Trop. 2000, 74: 159-168. 10.1016/S0001-706X(99)00066-2. Dharakul T, Songsivilai S: The many facets of melioidosis. Trends Microbiol. 1999, 7: 138-140. 10.1016/S0966-842X(99)01477-8. McGilvray CD: The transmission of glanders from horse to man. Can J Public Health. 1944, 35: 268-275. Benenson AS: Control of Communicable Diseases Manual. 1995, Washington, DC , American Public Health Association Miller WR, Pannell L, Cravitz L, Tanner WA, Ingalls MS: Studies on certain biological characteristics of Malleomyces mallei and Malleomyces pseudomallei. I. Morphology, cultivation, viability, and isolation from contaminated speciments. J Bacteriol. 1948, 55: 115-126. Minett FC: Glanders (and melioidosis). Infectious Diseases of Animals Diseases due to Bacteria. Edited by: Stableforth AW. 1959, New York , Academic Press Inc., Publishers, 1: 296-318. CDC: Public health assessment of potential biological terrorism agents. Emerg Infect Dis. 2002, 8: 225-230. Page JR, Terrell JJ: Glanders and farcy in horses. Contagious Diseases of Domesticated Animals, Special report No 22. Edited by: Agriculture USD. 1880, Washington, DC , Government Printing Office, 202-208. Sharrer GT: The great glanders epizootic, 1861-1866. Agricultural History. 1995, 69: 79-97. Alibek K, Handelman S: Biohazard: the chilling true story of the largest covert biological weapons program in the world. 1999, New York , Random House Godoy D, Randle G, Simpson AJ, Aanensen DM, Pitt TL, Kinoshita R, Spratt BG: Multilocus sequence typing and evolutionary relationships among the causative agents of Melioidosis and Glanders, Burkholderia pseudomallei and Burkholderia mallei. J Clin Microbiol. 2003, 41: 2068-2079. 10.1128/JCM.41.5.2068-2079.2003. Nierman WC, DeShazer D, Kim HS, Tettelin H, Nelson KE, Feldblyum T, Ulrich RL, Ronning CM, Brinkac LM, Daugherty SC: Structural flexibility in the Burkholderia genome. Proc Natl Acad Sci USA. 2004, 101 (39): 14246-14251. 10.1073/pnas.0403306101. Holden MTG, Titball RW, Peacock SJ, Cerden˜ o-Ta´ rraga AM, Atkins T, Crossman LC, Pitt T, Churcher C, Mungall K, Bentley SD, Etc.: Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci USA. 2004, 101 (39): 14240-14245. 10.1073/pnas.0403302101. Brett PJ, DeShazer D, Woods DE: Characterization of Burkholderia pseudomallei and Burkholderia pseudomallei-like strains. Epidemiol. Infect. 1997, 118: 137-148. Brett PJ, DeShazer D, Woods DE: Burkholderia thailandensis sp. nov., description of Burkholderia pseudomallei-like species. Int J Syst Bacteriol. 1998, 48: 317-320. Sanford JP: Pseudomonas species (including melioidosis and glanders). Priciples and Practice of Infectious Diseases 3rd edition ed. Edited by: Mandell GL, Douglas JRG, Bennett JE. 1990, New York , Churchill Livingstone, 1692-1696. Waag DM, DeShazer D: Glanders: New Insights into an old disease. Biological weapons defense: Infectious diseases and counterbioterrorism. Edited by: L.E. Lindler FJLGWK. 2004, Totowa, NJ , Humana Press Inc., 209-237. Steele JH: Glanders. CRC Handbook Series in Zoonoses. Edited by: JH. S. 1979, Boca Raton, FL , CRC Press, 339-362. Stevenson B, Bono JL, Schwan TG, Rosa P: Borrelia burgdorferi Erp proteins are immunogenic in mammals infected by tick bite, and their synthesis is inducible in cultured bacteria. Infect Immun. 1998, 66: 2648-2654. Bauer Y, Hofmann H, Jahraus O, Mytilineos J, Simon MM, Wallich R: Prominent T cell response to a selectively in vivo expressed Borrelia burgdorferi outer surface protein (pG) in patients with Lyme disease. Eur J Immunol. 2001, 31: 767-776. 10.1002/1521-4141(200103)31:3<767::AID-IMMU767>3.0.CO;2-M. Turner S, Reid E, Smith H, Cole J: A novel cytochrome c peroxidase from Neisseria gonorrhoeae: a lipoprotein from a Gram-negative bacterium. Biochem J. 2003, 373: 867-873. 10.1042/BJ20030088. Samyn B, Van Craenenbroeck K, De Smet L, Vandenberghe I, Pettigrew GW, Van Beeumen JJ: A reinvestigation of the covalent structure of Pseudomonas aeruginosa cytochrome c peroxidase. FEBS Lett. 1995, 377: 145-149. 10.1016/0014-5793(95)01326-1. Ulrich RL, DeShazer D: Type III secretion: a virulence factor delivery system essential for the pathogenicity of Burkholderia mallei. Infect Immun. 2004, 72: 1150-1154. 10.1128/IAI.72.2.1150-1154.2004. Warawa J, Woods DE: Type III secretion system cluster 3 is required for maximal virulence of Burkholderia pseudomallei in a hamster infection model. FEMS Microbiol Lett. 2005, 242: 101-108. 10.1016/j.femsle.2004.10.045. McKenzie GJ, Rosenberg SM: Adaptive mutations, mutator DNA polymerases and geneitc change strategies of pathogens. Curr Opin Microbiol. 2001, 4: 586-594. 10.1016/S1369-5274(00)00255-1. van der Woude MW, Baumler AJ: Phase and antigenic variation in bacteria. Clin Microbiol Rev. 2004, 17 (3): 581-611. 10.1128/CMR.17.3.581-611.2004. Reckseidler SL, DeShazer D, Sokol PA, Woods DE: Detection of bacterial virulence genes by subtractive hybridization: identification of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinent. Infect Immun. 2001, 69: 34-44. 10.1128/IAI.69.1.34-44.2001. Coenye T, Vandamme P: Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol. 2003, 5 (9): 719-729. 10.1046/j.1462-2920.2003.00471.x. Gan YH, Chua KL, Chua HH, Liu B, Hii CS, Chong HL, Tan P: Characterization of Burkholderia pseudomallei infection and identification of novel virulence factors using a Caenorhabditis elegans host system. Mol Microbiol. 2002, 44 (5): 1185-1197. 10.1046/j.1365-2958.2002.02957.x. O'Quinn AL, Wiegand EM, Jeddeloh JA: Burkholderia pseudomallei kills the nematode Caenorhabditis elegans using an endotoxin-mediated paralysis. Cell Microbiol. 2001, 3 (6): 381-393. 10.1046/j.1462-5822.2001.00118.x. Nierman WC, Feldblyum TV, Laub MT, Paulsen IT, Nelson KE, Eisen JA, Heidelberg JF, Alley MR, Ohta N, Maddock JR, Potocka I, Nelson WC, Newton A, Stephens C, Phadke ND, Ely B, DeBoy RT, Dodson RJ, Durkin AS, Gwinn ML, Haft DH, Kolonay JF, Smit J, Craven MB, Khouri H, Shetty J, Berry K, Utterback T, Tran K, Wolf A, Vamathevan J, Ermolaeva M, White O, Salzberg SL, Venter JC, Shapiro L, Fraser CM, Eisen J: Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci U S A. 2001, 98 (7): 4136-4141. 10.1073/pnas.061029298. Salzberg SL, Delcher AL, Kasif S, White O: Microbial gene identification using interpolated Markov models. Nucleic Acids Res. 1998, 26 (2): 544-548. 10.1093/nar/26.2.544. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, McKenney K, Sutton G, FitzHugh W, Fields C, Gocayne JD, Scott J, Shirley R, Liu LI, Glodek A, Kelley JM, Weidman JF, Phillips CA, Spriggs T, Hedblom E, Cotton MD, Utterback TR, Hanna MC, Nguyen DT, Saudek DM, Brandon RC, Fine LD, Fritchman JL, Fuhrmann JL, Geoghagen NSM, Gnehm CL, McDonald LA, Small KV, Fraser CM, Smith HO, Venter JC: Haemophilus influenzae Rd. Science. 1995, 269 (5223): 496-512. Waterman MS: Computer analysis of nucleic acid sequences. Methods Enzymol. 1988, 164: 765-793. Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer EL: The Pfam protein families database. Nucleic Acids Res. 2000, 28 (1): 263-266. 10.1093/nar/28.1.263. Haft DH, Loftus BJ, Richardson DL, Yang F, Eisen JA, Paulsen IT, White O: TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 2001, 29 (1): 41-43. 10.1093/nar/29.1.41. Riley M: Functions of the gene products of Escherichia coli. Microbiol Rev. 1993, 57 (4): 862-952. Primer 3 by Whitehead Institute: [http://www-genome.wi.mit.edu/genome_software/] TIGR Standard Operating Procedure: [http://www.tigr.org/tdb/microarray/protocolsTIGR.shtml] Guide for the Care and Use of Laboratory Animals: [http://www.nap.edu/readingroom/books/labrats/chaps.html] Kim H, Zhao B, Snesrud EC, Haas BJ, Town CD, Quackenbush J: Use of RNA and genomic DNA references for inferred comparisons in DNA microarray analyses. BioTechniques. 2002, 33: 924-930. Hegde P, Qi R, Abernathy K, Gay C, Dharap S, Gaspard R, Earle-Hughes J, Snesrud E, Lee N, Quackenbush J: A concise guide to cDNA microarray analysis. Biotechniques. 2000, 29: 548-562. TIGR Software Tools: [http://www.tigr.org/software] Array Express at EBI: [http://www.ebi.ac.uk/arrayexpress]