Gene therapy for ALS: A review
Tài liệu tham khảo
Oskarsson, 2018, Amyotrophic Lateral Sclerosis: An Update for 2018, Mayo Clin. Proc., 93, 1617, 10.1016/j.mayocp.2018.04.007
Martier, 2020, Gene Therapy for Neurodegenerative Diseases: Slowing Down the Ticking Clock, Front. Neurosci., 14, 580179, 10.3389/fnins.2020.580179
Chen, 2020, Overview of current and emerging therapies for amytrophic lateral sclerosis, Am. J. Manag. Care, 26, S191
Bensimon, 1994, A controlled trial of riluzole in amyotrophic lateral sclerosis, N. Engl. J. Med., 330, 585, 10.1056/NEJM199403033300901
Bellingham, 2011, A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade?, CNS Neurosci. Ther., 17, 4, 10.1111/j.1755-5949.2009.00116.x
Abe, 2014, Confirmatory double-blind, parallel-group, placebo-controlled study of efficacy and safety of edaravone (MCI-186) in amyotrophic lateral sclerosis patients Amyotroph. Lateral Scler. Frontotemporal Degener, 15, 610
2017, Exploratory double-blind, parallel-group, placebo-controlled extension study of edaravone (MCI-186) in amyotrophic lateral sclerosis Amyotroph, Lateral Scler. Frontotemporal Degener, 18, 20
Yoshino, 2006, Investigation of the therapeutic effects of edaravone, a free radical scavenger, on amyotrophic lateral sclerosis (Phase II study), Amyotroph. Lateral Scler., 7, 241, 10.1080/17482960600881870
Neumann, 2006, Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis, Science, 314, 130, 10.1126/science.1134108
Baradaran-Heravi, 2020, Stress granule mediated protein aggregation and underlying gene defects in the FTD-ALS spectrum, Neurobiol. Dis., 134, 104639, 10.1016/j.nbd.2019.104639
Mackenzie, 2007, The molecular genetics and neuropathology of frontotemporal lobar degeneration: recent developments, Neurogenetics, 8, 237, 10.1007/s10048-007-0102-4
Johnson, 2005, Frontotemporal lobar degeneration: demographic characteristics of 353 patients, Arch. Neurol., 62, 925, 10.1001/archneur.62.6.925
Josephs, 2004, Frontotemporal lobar degeneration and ubiquitin immunohistochemistry, Neuropathol. Appl. Neurobiol., 30, 369, 10.1111/j.1365-2990.2003.00545.x
Guo, 2017, Biology and Pathobiology of TDP-43 and Emergent Therapeutic Strategies, Cold Spring Harb. Perspect. Med., 7, a024554, 10.1101/cshperspect.a024554
Freibaum, 2010, Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery, J. Proteome Res., 9, 1104, 10.1021/pr901076y
Ling, 2013, Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis, Neuron, 79, 416, 10.1016/j.neuron.2013.07.033
Sephton, 2011, Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes, J. Biol. Chem., 286, 1204, 10.1074/jbc.M110.190884
Barmada, 2010, Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis, J. Neurosci., 30, 639, 10.1523/JNEUROSCI.4988-09.2010
Liu, 2017, RNA metabolism in neurodegenerative disease, Dis. Model. Mech., 10, 509, 10.1242/dmm.028613
Vanden Broeck, 2014, TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis?, Trends Mol. Med., 20, 66, 10.1016/j.molmed.2013.11.003
Melamed, 2019, Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration, Nat. Neurosci., 22, 180, 10.1038/s41593-018-0293-z
Cascella, 2016, Quantification of the Relative Contributions of Loss-of-function and Gain-of-function Mechanisms in TAR DNA-binding Protein 43 (TDP-43) Proteinopathies, J. Biol. Chem., 291, 19437, 10.1074/jbc.M116.737726
Boeynaems, 2016, Inside out: the role of nucleocytoplasmic transport in ALS and FTLD, Acta Neuropathol., 132, 159, 10.1007/s00401-016-1586-5
Zhang, 2009, Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity, Proc. Natl. Acad. Sci. USA, 106, 7607, 10.1073/pnas.0900688106
Liu-Yesucevitz, 2010, Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue, PLoS ONE, 5, e13250, 10.1371/journal.pone.0013250
Li, 2013, Stress granules as crucibles of ALS pathogenesis, J. Cell Biol., 201, 361, 10.1083/jcb.201302044
Zhang, 2018, Stress Granule Assembly Disrupts Nucleocytoplasmic Transport, Cell, 173, 958, 10.1016/j.cell.2018.03.025
Chia, 2018, Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications, Lancet Neurol., 17, 94, 10.1016/S1474-4422(17)30401-5
Rosen, 1993, Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature, 362, 59, 10.1038/362059a0
Philips, 2015, Rodent Models of Amyotrophic Lateral Sclerosis, Curr. Protoc. Pharmacol, 69, 5.67.1, 10.1002/0471141755.ph0567s69
Joyce, 2011, SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments, Mamm. Genome, 22, 420, 10.1007/s00335-011-9339-1
Mitsumoto, 2014, Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved?, Lancet Neurol., 13, 1127, 10.1016/S1474-4422(14)70129-2
Rothstein, 2003, Of mice and men: reconciling preclinical ALS mouse studies and human clinical trials, Ann. Neurol., 53, 423, 10.1002/ana.10561
Sreedharan, 2008, TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis, Science, 319, 1668, 10.1126/science.1154584
Rutherford, 2008, Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis, PLoS Genet., 4, e1000193, 10.1371/journal.pgen.1000193
Janssens, 2013, Overexpression of ALS-associated p.M337V human TDP-43 in mice worsens disease features compared to wild-type human TDP-43 mice, Mol. Neurobiol., 48, 22, 10.1007/s12035-013-8427-5
Wils, 2010, TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration, Proc. Natl. Acad. Sci. USA, 107, 3858, 10.1073/pnas.0912417107
Kwiatkowski, 2009, Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis, Science, 323, 1205, 10.1126/science.1166066
Vance, 2009, Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6, Science, 323, 1208, 10.1126/science.1165942
Elden, 2010, Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS, Nature, 466, 1069, 10.1038/nature09320
Renton, 2011, A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD, Neuron, 72, 257, 10.1016/j.neuron.2011.09.010
DeJesus-Hernandez, 2011, Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS, Neuron, 72, 245, 10.1016/j.neuron.2011.09.011
Majounie, 2012, Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study, Lancet Neurol., 11, 323, 10.1016/S1474-4422(12)70043-1
Liu, 2016, C9orf72 BAC Mouse Model with Motor Deficits and Neurodegenerative Features of ALS/FTD, Neuron, 90, 521, 10.1016/j.neuron.2016.04.005
Batra, 2017, Mouse Models of C9orf72 Hexanucleotide Repeat Expansion in Amyotrophic Lateral Sclerosis/ Frontotemporal Dementia, Front. Cell. Neurosci., 11, 196, 10.3389/fncel.2017.00196
Renton, 2014, State of play in amyotrophic lateral sclerosis genetics, Nat. Neurosci., 17, 17, 10.1038/nn.3584
Cappella, 2019, Gene Therapy for ALS-A Perspective, Int. J. Mol. Sci., 20, 4388, 10.3390/ijms20184388
Murlidharan, 2014, Biology of adeno-associated viral vectors in the central nervous system, Front. Mol. Neurosci., 7, 76, 10.3389/fnmol.2014.00076
Tosolini, 2017, Motor Neuron Gene Therapy: Lessons from Spinal Muscular Atrophy for Amyotrophic Lateral Sclerosis, Front. Mol. Neurosci., 10, 405, 10.3389/fnmol.2017.00405
Colella, 2017, Emerging Issues in AAV-Mediated In Vivo Gene Therapy, Mol. Ther. Methods Clin. Dev., 8, 87, 10.1016/j.omtm.2017.11.007
Duque, 2009, Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons, Mol. Ther., 17, 1187, 10.1038/mt.2009.71
Tanguy, 2015, Systemic AAVrh10 provides higher transgene expression than AAV9 in the brain and the spinal cord of neonatal mice, Front. Mol. Neurosci., 8, 36, 10.3389/fnmol.2015.00036
Foust, 2010, Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN, Nat. Biotechnol., 28, 271, 10.1038/nbt.1610
Dominguez, 2011, Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice, Hum. Mol. Genet., 20, 681, 10.1093/hmg/ddq514
Valori, 2010, Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy, Sci. Transl. Med., 2, 35ra42, 10.1126/scitranslmed.3000830
Mendell, 2017, Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy, N. Engl. J. Med., 377, 1713, 10.1056/NEJMoa1706198
Deverman, 2016, Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain, Nat. Biotechnol., 34, 204, 10.1038/nbt.3440
Chan, 2017, Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems, Nat. Neurosci., 20, 1172, 10.1038/nn.4593
Challis, 2019, Systemic AAV vectors for widespread and targeted gene delivery in rodents, Nat. Protoc., 14, 379, 10.1038/s41596-018-0097-3
Azzouz, 2006, Gene Therapy for ALS: progress and prospects, Biochim. Biophys. Acta, 1762, 1122, 10.1016/j.bbadis.2006.05.003
Choudhury, 2017, Viral vectors for therapy of neurologic diseases, Neuropharmacology, 120, 63, 10.1016/j.neuropharm.2016.02.013
Suzuki, 2016, Ex Vivo Gene Therapy Using Human Mesenchymal Stem Cells to Deliver Growth Factors in the Skeletal Muscle of a Familial ALS Rat Model, Methods Mol. Biol., 1382, 325, 10.1007/978-1-4939-3271-9_24
Ly, 2018, Emerging antisense oligonucleotide and viral therapies for amyotrophic lateral sclerosis, Curr. Opin. Neurol., 31, 648, 10.1097/WCO.0000000000000594
Schoch, 2017, Antisense Oligonucleotides: Translation from Mouse Models to Human Neurodegenerative Diseases, Neuron, 94, 1056, 10.1016/j.neuron.2017.04.010
Bennett, 2010, RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform, Annu. Rev. Pharmacol. Toxicol., 50, 259, 10.1146/annurev.pharmtox.010909.105654
Passini, 2011, Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy, Sci. Transl. Med., 3, 72ra18, 10.1126/scitranslmed.3001777
Chiriboga, 2016, Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy, Neurology, 86, 890, 10.1212/WNL.0000000000002445
Finkel, 2016, Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study, Lancet, 388, 3017, 10.1016/S0140-6736(16)31408-8
Finkel, 2017, Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy, N. Engl. J. Med., 377, 1723, 10.1056/NEJMoa1702752
Ekhtiari Bidhendi, 2018, Mutant superoxide dismutase aggregates from human spinal cord transmit amyotrophic lateral sclerosis, Acta Neuropathol., 136, 939, 10.1007/s00401-018-1915-y
Gurney, 1994, Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation, Science, 264, 1772, 10.1126/science.8209258
Ripps, 1995, Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis, Proc. Natl. Acad. Sci. USA, 92, 689, 10.1073/pnas.92.3.689
Nagai, 2001, Rats expressing human cytosolic copper-zinc superoxide dismutase transgenes with amyotrophic lateral sclerosis: associated mutations develop motor neuron disease, J. Neurosci, 21, 9246, 10.1523/JNEUROSCI.21-23-09246.2001
Smith, 2006, Antisense oligonucleotide therapy for neurodegenerative disease, J. Clin. Invest., 116, 2290, 10.1172/JCI25424
Miller, 2013, An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study, Lancet Neurol., 12, 435, 10.1016/S1474-4422(13)70061-9
Miller, 2020, Phase 1-2 Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS, N. Engl. J. Med., 383, 109, 10.1056/NEJMoa2003715
Biferi, 2017, A New AAV10-U7-Mediated Gene Therapy Prolongs Survival and Restores Function in an ALS Mouse Model, Mol. Ther., 25, 2038, 10.1016/j.ymthe.2017.05.017
Donnelly, 2013, RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention, Neuron, 80, 415, 10.1016/j.neuron.2013.10.015
Balendra, 2018, C9orf72-mediated ALS and FTD: multiple pathways to disease, Nat. Rev. Neurol., 14, 544, 10.1038/s41582-018-0047-2
Lagier-Tourenne, 2013, Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration, Proc. Natl. Acad. Sci. USA, 110, E4530, 10.1073/pnas.1318835110
Sareen, 2013, Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion, Sci. Transl. Med., 5, 208ra149, 10.1126/scitranslmed.3007529
Jiang, 2016, Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs, Neuron, 90, 535, 10.1016/j.neuron.2016.04.006
Imbert, 1996, Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats, Nat. Genet., 14, 285, 10.1038/ng1196-285
Pulst, 1996, Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2, Nat. Genet., 14, 269, 10.1038/ng1196-269
Sanpei, 1996, Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT, Nat. Genet., 14, 277, 10.1038/ng1196-277
Fernandez, 2000, Late-onset SCA2: 33 CAG repeats are sufficient to cause disease, Neurology, 55, 569, 10.1212/WNL.55.4.569
Yu, 2011, PolyQ repeat expansions in ATXN2 associated with ALS are CAA interrupted repeats, PLoS ONE, 6, e17951, 10.1371/journal.pone.0017951
Lee, 2011, Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients, Hum. Mol. Genet., 20, 1697, 10.1093/hmg/ddr045
Van Damme, 2011, Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2, Neurology, 76, 2066, 10.1212/WNL.0b013e31821f445b
Nonhoff, 2007, Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules, Mol. Biol. Cell, 18, 1385, 10.1091/mbc.e06-12-1120
Hart, 2012, ALS-associated ataxin 2 polyQ expansions enhance stress-induced caspase 3 activation and increase TDP-43 pathological modifications, J. Neurosci., 32, 9133, 10.1523/JNEUROSCI.0996-12.2012
van den Heuvel, 2014, Taking a risk: a therapeutic focus on ataxin-2 in amyotrophic lateral sclerosis?, Trends Mol. Med., 20, 25, 10.1016/j.molmed.2013.09.001
Becker, 2017, Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice, Nature, 544, 367, 10.1038/nature22038
Conte, 2012, P525L FUS mutation is consistently associated with a severe form of juvenile amyotrophic lateral sclerosis, Neuromuscul. Disord., 22, 73, 10.1016/j.nmd.2011.08.003
Cappella, 2021, Beyond the Traditional Clinical Trials for Amyotrophic Lateral Sclerosis and The Future Impact of Gene Therapy, J. Neuromuscul. Dis., 8, 25, 10.3233/JND-200531
Arnold, 2019, Tailored treatment for ALS poised to move ahead, Nat. Med., 10.1038/d41591-019-00013-w
Figueiredo, 2020
2021
Borel, 2014, Recombinant AAV as a platform for translating the therapeutic potential of RNA interference, Mol. Ther., 22, 692, 10.1038/mt.2013.285
Boudreau, 2009, Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo, Mol. Ther., 17, 169, 10.1038/mt.2008.231
McBride, 2008, Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi, Proc. Natl. Acad. Sci. USA, 105, 5868, 10.1073/pnas.0801775105
Boudreau, 2013, siSPOTR: a tool for designing highly specific and potent siRNAs for human and mouse, Nucleic Acids Res., 41, e9, 10.1093/nar/gks797
Evers, 2018, AAV5-miHTT Gene Therapy Demonstrates Broad Distribution and Strong Human Mutant Huntingtin Lowering in a Huntington’s Disease Minipig Model, Mol. Ther., 26, 2163, 10.1016/j.ymthe.2018.06.021
Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829
Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143
Yun, 2020, CRISPR/Cas9-Mediated Gene Correction to Understand ALS, Int. J. Mol. Sci., 21, 3801, 10.3390/ijms21113801
Anzalone, 2020, Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors, Nat. Biotechnol., 38, 824, 10.1038/s41587-020-0561-9
Burmistrz, 2020, RNA-Targeting CRISPR-Cas Systems and Their Applications, Int. J. Mol. Sci., 21, 1122, 10.3390/ijms21031122
Doudna, 2020, The promise and challenge of therapeutic genome editing, Nature, 578, 229, 10.1038/s41586-020-1978-5
Wang, 2020, CRISPR-Based Therapeutic Genome Editing: Strategies and In Vivo Delivery by AAV Vectors, Cell, 181, 136, 10.1016/j.cell.2020.03.023
Qi, 2013, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, 152, 1173, 10.1016/j.cell.2013.02.022
Abudayyeh, 2016, C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector, Science, 353, aaf5573, 10.1126/science.aaf5573
Abudayyeh, 2017, RNA targeting with CRISPR-Cas13, Nature, 550, 280, 10.1038/nature24049
Konermann, 2018, Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors, Cell, 173, 665, 10.1016/j.cell.2018.02.033
Anzalone, 2019, Search-and-replace genome editing without double-strand breaks or donor DNA, Nature, 576, 149, 10.1038/s41586-019-1711-4
Foust, 2013, Therapeutic AAV9-mediated suppression of mutant SOD1 slows disease progression and extends survival in models of inherited ALS, Mol. Ther., 21, 2148, 10.1038/mt.2013.211
Foust, 2009, Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes, Nat. Biotechnol., 27, 59, 10.1038/nbt.1515
Thomsen, 2014, Delayed disease onset and extended survival in the SOD1G93A rat model of amyotrophic lateral sclerosis after suppression of mutant SOD1 in the motor cortex, J. Neurosci., 34, 15587, 10.1523/JNEUROSCI.2037-14.2014
Stoica, 2016, Adeno-associated virus-delivered artificial microRNA extends survival and delays paralysis in an amyotrophic lateral sclerosis mouse model, Ann. Neurol., 79, 687, 10.1002/ana.24618
Borel, 2016, Therapeutic rAAVrh10 Mediated SOD1 Silencing in Adult SOD1(G93A) Mice and Nonhuman Primates, Hum. Gene Ther., 27, 19, 10.1089/hum.2015.122
Borel, 2018, Safe and effective superoxide dismutase 1 silencing using artificial microRNA in macaques, Sci. Transl. Med, 10, eaau6414, 10.1126/scitranslmed.aau6414
Mueller, 2020, SOD1 Suppression with Adeno-Associated Virus and MicroRNA in Familial ALS, N. Engl. J. Med, 383, 151, 10.1056/NEJMoa2005056
Hinderer, 2018, Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN, Hum. Gene Ther, 29, 285, 10.1089/hum.2018.015
Hordeaux, 2020, Adeno-Associated Virus-Induced Dorsal Root Ganglion Pathology, Hum. Gene Ther., 31, 808, 10.1089/hum.2020.167
Keeler, 2019, Intralingual and Intrapleural AAV Gene Therapy Prolongs Survival in a SOD1 ALS Mouse Model, Mol. Ther. Methods Clin. Dev., 17, 246, 10.1016/j.omtm.2019.12.007
Hordeaux, 2020, MicroRNA-mediated inhibition of transgene expression reduces dorsal root ganglion toxicity by AAV vectors in primates, Sci. Transl. Med, 12, eaba9188, 10.1126/scitranslmed.aba9188
Bravo-Hernandez, 2020, Spinal subpial delivery of AAV9 enables widespread gene silencing and blocks motoneuron degeneration in ALS, Nat. Med, 26, 118, 10.1038/s41591-019-0674-1
Gaj, 2017, In vivo genome editing improves motor function and extends survival in a mouse model of ALS, Sci. Adv., 3, eaar3952, 10.1126/sciadv.aar3952
Duan, 2020, The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotrophic lateral sclerosis mouse model, Gene Ther, 27, 157, 10.1038/s41434-019-0116-1
Lim, 2020, Treatment of a Mouse Model of ALS by In Vivo Base Editing, Mol. Ther., 28, 1177, 10.1016/j.ymthe.2020.01.005
Petri, 2013, SsiRNA design principles and off-target effects, Methods Mol. Biol., 986, 59, 10.1007/978-1-62703-311-4_4
Hu, 2015, Engineering Duplex RNAs for Challenging Targets: Recognition of GGGGCC/CCCCGG Repeats at the ALS/FTD C9orf72 Locus, Chem. Biol., 22, 1505, 10.1016/j.chembiol.2015.09.016
Hu, 2017, Recognition of c9orf72 Mutant RNA by Single-Stranded Silencing RNAs, Nucleic Acid Ther., 27, 87, 10.1089/nat.2016.0655
Martier, 2019, Artificial MicroRNAs Targeting C9orf72 Can Reduce Accumulation of Intra-nuclear Transcripts in ALS and FTD Patients, Mol. Ther. Nucleic Acids, 14, 593, 10.1016/j.omtn.2019.01.010
Martier, 2019, Targeting RNA-Mediated Toxicity in C9orf72 ALS and/or FTD by RNAi-Based Gene Therapy, Mol. Ther. Nucleic Acids, 16, 26, 10.1016/j.omtn.2019.02.001
Krishnan, 2020, CRISPR deletion of the C9ORF72 promoter in ALS/FTD patient motor neurons abolishes production of dipeptide repeat proteins and rescues neurodegeneration, Acta Neuropathol, 140, 81, 10.1007/s00401-020-02154-6
Lopez-Gonzalez, 2019, Partial inhibition of the overactivated Ku80-dependent DNA repair pathway rescues neurodegeneration in C9ORF72-ALS/FTD, Proc. Natl. Acad. Sci. USA, 116, 9628, 10.1073/pnas.1901313116
Scoles, 2017, Antisense oligonucleotide therapy for spinocerebellar ataxia type 2, Nature, 544, 362, 10.1038/nature22044
Keiser, 2014, Broad therapeutic benefit after RNAi expression vector delivery to deep cerebellar nuclei: implications for spinocerebellar ataxia type 1 therapy, Mol. Ther., 22, 588, 10.1038/mt.2013.279
Keiser, 2016, RNAi prevents and reverses phenotypes induced by mutant human ataxin-1, Ann. Neurol., 80, 754, 10.1002/ana.24789
Nóbrega, 2013, Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice, PLoS ONE, 8, e52396, 10.1371/journal.pone.0052396
Nóbrega, 2014, RNA interference mitigates motor and neuropathological deficits in a cerebellar mouse model of Machado-Joseph disease, PLoS ONE, 9, e100086, 10.1371/journal.pone.0100086
Ramachandran, 2014, Nonallele specific silencing of ataxin-7 improves disease phenotypes in a mouse model of SCA7, Mol. Ther., 22, 1635, 10.1038/mt.2014.108
Ouyang, 2018, CRISPR/Cas9-Targeted Deletion of Polyglutamine in Spinocerebellar Ataxia Type 3-Derived Induced Pluripotent Stem Cells, Stem Cells Dev, 27, 756, 10.1089/scd.2017.0209
Buijsen, 2019, Genetics, Mechanisms, and Therapeutic Progress in Polyglutamine Spinocerebellar Ataxias, Neurotherapeutics, 16, 263, 10.1007/s13311-018-00696-y
Petrov, 2017, ALS Clinical Trials Review: 20 Years of Failure. Are We Any Closer to Registering a New Treatment?, Front. Aging Neurosci., 9, 68, 10.3389/fnagi.2017.00068
Bartus, 2017, Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 1: Where have we been and what have we learned?, Neurobiol. Dis., 97, 156, 10.1016/j.nbd.2016.03.027
Allodi, 2016, Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS, Sci. Rep., 6, 25960, 10.1038/srep25960
Lin, 2018, Intramuscular Delivery of scAAV9-hIGF1 Prolongs Survival in the hSOD1 G93A ALS Mouse Model via Upregulation of D-Amino Acid Oxidase, Mol. Neurobiol, 55, 682, 10.1007/s12035-016-0335-z
Wang, 2018, Systemic administration of scAAV9-IGF1 extends survival in SOD1G93A ALS mice via inhibiting p38 MAPK and the JNK-mediated apoptosis pathway, Brain Res. Bull., 139, 203, 10.1016/j.brainresbull.2018.02.015
Dodge, 2010, AAV4-mediated expression of IGF-1 and VEGF within cellular components of the ventricular system improves survival outcome in familial ALS mice, Mol. Ther., 18, 2075, 10.1038/mt.2010.206
Li, 2017, AAV9-IGF1 protects TDP-25 cells from apoptosis and oxidative stress partly via up-regulating the expression of VEGF in vitro, Neurosci. Lett, 640, 123, 10.1016/j.neulet.2017.01.009
Keifer, 2014, Gene and protein therapies utilizing VEGF for ALS, Pharmacol. Ther., 141, 261, 10.1016/j.pharmthera.2013.10.009
Wang, 2016, scAAV9-VEGF prolongs the survival of transgenic ALS mice by promoting activation of M2 microglia and the PI3K/Akt pathway, Brain Res, 1648, 1, 10.1016/j.brainres.2016.06.043
Bucher, 2013, scAAV9 intracisternal delivery results in efficient gene transfer to the central nervous system of a feline model of motor neuron disease, Hum. Gene Ther, 24, 670, 10.1089/hum.2012.218
Wang, 2002, Neuroprotective effects of glial cell line-derived neurotrophic factor mediated by an adeno-associated virus vector in a transgenic animal model of amyotrophic lateral sclerosis, J. Neurosci., 22, 6920, 10.1523/JNEUROSCI.22-16-06920.2002
Li, 2007, Muscle-derived but not centrally derived transgene GDNF is neuroprotective in G93A-SOD1 mouse model of ALS, Exp. Neurol, 203, 457, 10.1016/j.expneurol.2006.08.028
Thomsen, 2017, Systemic injection of AAV9-GDNF provides modest functional improvements in the SOD1G93A ALS rat but has adverse side effects, Gene Ther., 24, 245, 10.1038/gt.2017.9
Henriques, 2011, CNS-targeted viral delivery of G-CSF in an animal model for ALS: improved efficacy and preservation of the neuromuscular unit, Mol. Ther., 19, 284, 10.1038/mt.2010.271
Lee, 2019, Intrathecal delivery of recombinant AAV1 encoding hepatocyte growth factor improves motor functions and protects neuromuscular system in the nerve crush and SOD1-G93A transgenic mouse models, Acta Neuropathol. Commun., 7, 96, 10.1186/s40478-019-0737-z
Lee, 2019, Intramuscular delivery of HGF-expressing recombinant AAV improves muscle integrity and alleviates neurological symptoms in the nerve crush and SOD1-G93A transgenic mouse models, Biochem. Biophys. Res. Commun., 517, 452, 10.1016/j.bbrc.2019.07.105
Mancuso, 2016, Neuregulin-1 promotes functional improvement by enhancing collateral sprouting in SOD1(G93A) ALS mice and after partial muscle denervation, Neurobiol. Dis, 95, 168, 10.1016/j.nbd.2016.07.023
Miyoshi, 2017, DOK7 gene therapy enhances motor activity and life span in ALS model mice, EMBO Mol. Med., 9, 880, 10.15252/emmm.201607298
Wang, 2017, Intrathecal Delivery of ssAAV9-DAO Extends Survival in SOD1 G93A ALS Mice, Neurochem. Res, 42, 986, 10.1007/s11064-016-2131-6
Israelson, 2015, Macrophage migration inhibitory factor as a chaperone inhibiting accumulation of misfolded SOD1, Neuron, 86, 218, 10.1016/j.neuron.2015.02.034
Leyton-Jaimes, 2019, AAV2/9-mediated overexpression of MIF inhibits SOD1 misfolding, delays disease onset, and extends survival in mouse models of ALS, Proc. Natl. Acad. Sci. USA, 116, 14755, 10.1073/pnas.1904665116
Patel, 2014, Adeno-associated virus-mediated delivery of a recombinant single-chain antibody against misfolded superoxide dismutase for treatment of amyotrophic lateral sclerosis, Mol. Ther, 22, 498, 10.1038/mt.2013.239
Pozzi, 2019, Virus-mediated delivery of antibody targeting TAR DNA-binding protein-43 mitigates associated neuropathology, J. Clin. Invest., 129, 1581, 10.1172/JCI123931