Evaluation of muscle activity, bite force and salivary cortisol in children with bruxism before and after low level laser applied to acupoints: study protocol for a randomised controlled trial
Tóm tắt
Bruxism is a repetitive activity that causes tooth wear, audible sounds, and discomfort. Preventive measures have been studied for conditions that can exert a negative influence on physiological development in children. Low-level laser therapy administered over acupoints is an effective, painless, low-cost treatment option that has achieved good results. Thus, the aim of the proposed study is to evaluate changes in muscle activity, bite force and salivary cortisol in children with bruxism after the application of low-level laser to accupoints. The children will be randomly allocated to four groups of 19 individuals: G1 - low-level laser; G2 - occlusal splint; G3 - placebo laser; and G4 - control (without bruxism). The BTS TMJOINT electromyography will be used to determine muscle activity and a digital gnathodynamometer will be used to measure bite force. Salivary cortisol will be analysed at baseline as well as one and six months after treatment. Two-way ANOVA will be employed and complemented by Tukey’s test. Bruxism is a repetitive activity of the masticatory muscles that can have negative consequences if not treated, such as tooth wear, noises, discomfort and anxiety. Thus, control and treatment measures should be taken. Although low-level laser therapy over acupoints has been indicated for children, the effects of this treatment modality have not yet been studied.
NCT02757261
on 8 April 2016. This study protocol received a grant from the Brazilian fostering agency São Paulo Research Foundation (FAPESP: #2015/24731-0).
Tài liệu tham khảo
Darien IL. Sleep related bruxism. In: International classification of sleep disorders. 3rd ed. American Academy of Sleep Medicine. Darien, Illinois, EUA. 2014.
Bader G, Lavigne G. Sleep bruxism: an overview of an oromandibular sleep movement disorder. Sleep Med Reviews. 2000;4:27–43.
Lobbezoo F, Zaag JUD, Naeije M. Bruxism: its multiple causes and its effects on dental implants - an updated review. J Oral Rehabil. 2006;33(4):293–300.
Aloé F, Gonçalves LR, Azevedo A, Barbosa RC. Bruxismo durante o sono. Rev Neurociências. 2003;11(1):4–17.
Motta LJ, Bortoletto CC, Marques AJ, Ferrari RA, Fernandes KP, Bussadori SK. Association between respiratory problems and dental caries in children with bruxism. Indian J Dent Res. 2014;25(1):9–13.
Bortoletto CC, Cordeiro da Silva F, Silva PF, Leal de Godoy CH, Albertini R, Motta LJ, Mesquita-Ferrari RA, Fernandes KP, Romano R, Bussadori SK. Evaluation of Cranio-cervical posture in children with bruxism before and after bite plate therapy: a pilot project. J Phys Ther Sci. 2014;26(7):1125–8.
Behr M, Hahnel S, Faltermeier A, Bürgers R, Kolbeck C, Handel G, Proff P. The two main theories on dental bruxism. Ann Anat. 2012;194(2):216–9.
Shetty S, Pitti V, Babu CS, Kumar GS, Deepthi BC. Bruxism: a literature review. J Indian Prosthodont Soc. 2010;10(3):141–8.
Muzalev K, Lobbezoo F, Janal MN, Raphael KG. Inter-episode sleep bruxism intervals and myofascial face pain. Sleep. 2017. doi:10.1093/sleep/zsx078.
De Boever JÁ, Steenks MH. Epidemiologia, sintomatologia e etiologia da disfunção craniomandibular. In: STEENKS, M.H. & WIJER, A. Disfunção da articulação temporomandibular do ponto de vista da fisioterapia e da odontologia- diagnóstico e tratamento. Translation by Hildegard Thiemann Buckup. São Paulo, Santos:1996.p.35–43.
Manfredini D, Landi N, Fantoni F, SeguM BM. Anxiety symptoms in clinically diagnosed bruxers. J Oral Rehabil. 2005;32(8):584–8.
Oliveira M, Bittencourt S, Marcon K, Destro S, Pereira J. Sleep bruxism and anxiety level in children. Braz Oral Res. 2015;29(1):1–5.
Gungormus Z, Erciyas K. Evaluation of the relationship between anxiety and depression and bruxism. J Int Med Res. 2009;37(2):547–50.
Rodrigues CK, Ditterich RG, Shintcowsk RL, Tanaka O. Bruxismo: uma revisão da literatura. Ci BiolSaúde UERG Set. 2006;12(3):13–21.
Lavigne GJ, Rompe RH, Montplaisir JY. Sleep bruxism: validity of clinical research diagnostic criteria in a controlled polysomnographic study. J Dent Res. 1996;75(1):546–55.
Kato T, Montplaisir JY, Guitard F, Sessle BJ, Lund JP, Lavigne GJ. Evidence that experimentally induce sleep bruxism is a consequence of transient arousal. J Dent Res. 2003;82:284–8.
Tsukiyama Y, Baba K, Clark GT. An evidence-based assessment of occlusal adjustment as a treatment for temporomandibular disorders. J Prosthet Dent. 2001;86(1):57–66.
Solberg WK, Clarck GT, Rugh JD. Nocturnal electomyographic evaluation of bruxism patients undergoing short term splint therapy. J Oral Rehabil. 2007;2:215–23.
McLean L, Chislett M, Keit M, Murphy M, Walton P. The effect of head position, electrode site, movement and smoothing window in the determination of a reliable maximum voluntary activation of the upper trapezius muscle. J Electromiogrand Kinesiol. 2003;13(2):169–80.
Hachmann A, Martins EA, Araujo FB, Nunes R. Efficacy of the nocturnal bite plate in the control of bruxism for 3 to 5 year old children. J Clin Pediatr Dent. 1999;24(1):9–15.
Venezian GC, Silva MAMR, Mazzetto RG, Mazzeto MO. Low level laser effects on pain to palpation and eletromyographic activity in TMD patients: a double-blind, randomized, placebo-controlled study. J Craniomand Pract. 2010;28(2):84–91.
Dallanora LJ, Faltin PP, Inoue Rt, Aranha dos Santos VM, Tanaka J. Avaliação do uso de acupuntura no tratamento de pacientes com bruxismo. RGO (Porto Alegre). 2004;52(5):333–9.
Wen TS. Acupuntura clássica chinesa. São Paulo: Cultrix; 2006. p. 15–7.
Carlsson GE, Egermark I, Magnusson T. Predictors of bruxism, other oral parafunctions, and toothwear over a 20-year follow-up period. J OrofacPain. 2003;17(1):50–7.
Epelbaum E. tratamento da deficiência neurosensorial por laser em baixa potência e sua associação a acupuntura a laser. Dissertação – Instituto de Pesquisas Energéticas e Nucleares, Universidade Federal de Santa Catarina, Florianópolis, SC; 2007.
King CE, et al. Effect of Helium-Neon laser auriculotherapy on experimental pain threhold. PhysTher. 1990;70(1):38–44.
Siedentopf CM, et al. Laser acupunture induced specific cerebral cortical and subcortical activations in humans. Lasers Med Sci. 2005;20:68–73.
Serra-Negra JM, Paiva SM, Seabra AP, Dorella C, Lemos BF, Pordeus IA. Prevalence of sleep bruxism in a group of Brazilian schoolchildren. Eur Arch PediatrDent. 2010;11(4):192–5.
Manfredini D, Restrepo C, Diaz-Serrano K, Winocur E, Lobbezoo F. Prevalence of sleep bruxism in children: a systematic review of the literature. J Oral Rehabil. 2013;40:631–42.
Carvalho CM, Lacerda JÁ, Neto FPS, Cangussu MCT, Marques AMC, Pinheiro ALB. Wave length effect in temporomandibular joint pain: a clinical experience. Lasers Med Sci. 2010;25:229–32.
Tartaglia GM, Moreira R, da Silva MA, Bottini S, Sforza C. Masticatory muscle activity during maximum voluntary clench in different research diagnostic criteria for temporomandibular disorders (RDC/TMD) groups. Man Ther. 2008;13:434–40.
Falla D, Arendt-Nielsen L, Farina D. The pain-induced change in relative activation of upper trapezius muscle regions is independent of the site of noxious stimulation. Clin Neurophysiol. 2009;120:150–7.
Moyers RE. Etiologia da Maloclusão. In: Moyers RE. Ortodontia. 4. ed. Rio de Janeiro: Guanabara Koogan 1991: 157–59/212–37.59.
Ferrario VF, Sforza C, Colombo A, Ciusa V. An electromyographic investigation of masticatory muscles symmetry in normo-occlusion subjects. J Oral Rehab. 2000;27:33–40.
Tartaglia GM, Lodetti G, Paiva GD, Felicio CM, Sforza C. Surface eletromyography assessment of patients with long lasting temporomandibular joint disorder pain. J Electromyogr Kinesiol. 2011;21:659–64.
Santos MJP, Bernabé DG, Nakamune ACMS, Perri SHV, Aguiar SMHCA, Oliveira SHP. Salivary alpha amylase and cortisol levels in children with global developmental delay and their relation with the expectation of dental care and behavior during the intervention. Res Develop Disabil. 2012;33(2):499–505.
Restrepo CC, Medina I, Patiño I. Effect of occlusal splints on the temporomandibular disorders, dental wear and anxiety of bruxist children. Eur J Dent. 2011;5(4):441–50.
Lobbezoo F, Ahlberg J, Glaros AG, Kato T, Koyano K, Lavigne G, et al. Bruxism defined and graded: an international consensus. J Oral Rehab. 2013;40:2–4.
Alkan A, Bulut E, Arici S, Sato S. Evaluation of treatments in patients with nocturnal bruxism on bite force and occlusal contact area: a preliminary report. Eur J Dent. 2008;2(4):276–82.
Bruce J, Davis EP, Gunnar MR. Individual differences in childrens cortisol response to the beginning of a new school year. Psychoneuroendoc. 2002;27(6):635–50.
Gunnar MR, Donzella B. Social regulation of the cortisol levels in early human development. Psychoneuroendoc. 2002;27(1–2):199–220.
Silva ML, Mallozi MC, Ferrari GF. Salivary cortisol to assess the hypothalamic-pituitaryadrenal axis in healthy children under 3 years old. J Pediatr. 2007;83(2):121–6.
Saletu A, Parapatics S, Saletu B, Anderer P, Prause W, Putz H, Saletu-Zyhlarz GM. On the pharmacotherapy of sleep bruxism: placebo-controlled polysomnographic and psychometric studies with clonazepam. Neuropsychobiology. 2005;51(4):214–25.
Huynh N, Manzini C, Rompré PH, Lavigne GJ. Weighing the potential effectiveness of various treatments for sleep bruxism. J Can Dent Assoc. 2007;73(8):727–30.
Reimão R, Lefévre AB. Evaluation of flurazepam and placebo on sleep disorders in childhood. Arq Neuropsiquiatr. 1982;40(1):1–13.