Inflammation stimulates myelination by transplanted oligodendrocyte precursor cells

GLIA - Tập 54 Số 4 - Trang 297-303 - 2006
Anna Setzu1,2,3, Justin D. Lathia1,2,4, Chao Zhao1,3, K. Sam Wells1,3, Mahendra S. Rao4, Charles ffrench‐Constant1,2, Robin J.M. Franklin1,3
1Cambridge Centre for Brain Repair and MS Society Cambridge Centre for Myelin Repair,University of Cambridge, Cambridge, United Kingdom
2Department of Pathology, University of Cambridge, Cambridge, United Kingdom
3Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
4Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland

Tóm tắt

Abstract

Inflammation associated with CNS demyelination provides an important stimulus for the activation of endogenous oligodendrocyte precursor cells (OPCs) and subsequent remyelination. This view is largely based on “loss‐of‐function” studies, whereby remyelination is impaired following depletion of inflammatory cells or mediators. However, “gain‐of‐function” approaches, asking whether inflammation directly enhances remyelination, have received less attention. We have addressed this issue using a model in which OPCs transplanted into the adult rat retina myelinate retinal ganglion cell axons around the point of injection. Inflammation (characterized by increased expression of the macrophage marker ED1 and the astrocyte marker GFAP, and the up‐regulation of multiple cytokines) was induced in the retina by the administration of the TLR‐2 ligand zymosan. Myelination, revealed by MBP+ myelin sheaths, was substantially increased when OPCs were injected into the inflamed retina compared to that achieved following transplantation into the normal, noninflamed retina. Our results have important implications for the development of immunomodulatory treatments for acute demyelinating disease and for the therapeutic creation of proremyelination environments in chronic demyelinating disease. © 2006 Wiley‐Liss, Inc.

Từ khóa


Tài liệu tham khảo

10.1038/nn738

10.1159/000064944

10.1093/emboj/21.8.1957

10.1038/35012083

10.1002/ana.10578

10.1007/BF00688052

10.1056/NEJMoa010994

10.1002/jnr.20763

10.1083/jcb.200404076

10.1016/S1044-7431(03)00210-0

10.1002/jnr.10837

10.1002/glia.10335

10.1016/j.mcn.2004.06.015

10.1093/brain/awh417

10.1523/JNEUROSCI.2120-05.2005

10.1038/nrn917

10.1016/S0896-6273(00)80359-1

10.1002/jnr.20019

10.1002/glia.440110405

10.1016/j.expneurol.2005.10.016

10.1038/nrn784

10.1006/mcne.1999.0771

10.1006/mcne.2000.0897

10.1523/JNEUROSCI.20-06-02218.2000

10.1006/dbio.2001.0208

10.1007/BF00691075

10.1523/JNEUROSCI.2615-05.2006

10.1016/j.nbd.2004.09.019

10.1002/(SICI)1098-1136(199611)18:3<200::AID-GLIA4>3.0.CO;2-2

10.1002/eji.200425430

10.1523/JNEUROSCI.20-12-04615.2000

10.1006/exnr.1999.7224

10.1016/j.jneuroim.2004.08.011

Ludwin SK, 1980, Chronic demyelination inhibits remyelination in the central nervous system, Lab Invest, 43, 382

10.1016/S1474-4422(02)00223-5

10.1523/JNEUROSCI.21-18-07046.2001

10.1083/jcb.121.6.1397

Milner R, 1994, A developmental analysis of oligodendroglial integrins in primary cells: Changes in α‐v‐associated β subunits during differentiation, Development, 120, 3497, 10.1242/dev.120.12.3497

10.1006/mcne.1998.0715

10.1016/j.neulet.2003.07.014

10.1002/glia.10286

10.1038/nature01552

10.1093/jnen/61.7.623

10.1097/00005072-199305000-00003

10.1002/(SICI)1097-4695(19981115)37:3<413::AID-NEU7>3.0.CO;2-8

10.1016/0304-3940(93)90396-3

10.1002/glia.10321

10.1002/jnr.490230408

10.1523/JNEUROSCI.22-07-02451.2002

10.1016/j.expneurol.2004.01.028

10.1006/mcne.2002.1127

10.1002/jnr.10338

10.1523/JNEUROSCI.18-02-00601.1998

10.1093/brain/awf031

10.1523/JNEUROSCI.23-06-02284.2003

10.1111/j.1469-7580.2005.00456.x

10.1016/j.neurobiolaging.2005.06.008