Development and validation of clinical prediction models to risk stratify patients presenting with small pulmonary nodules: a research protocol
Tóm tắt
Lung cancer is a common cancer, with over 1.3 million cases worldwide each year. Early diagnosis using computed tomography (CT) screening has been shown to reduce mortality but also detect non-malignant nodules that require follow-up scanning or alternative methods of investigation. Practical and accurate tools that can predict the probability that a lung nodule is benign or malignant will help reduce costs and the risk of morbidity and mortality associated with lung cancer. Retrospectively collected data from 1500 patients with pulmonary nodule(s) of up to 15 mm detected on routinely performed CT chest scans aged 18 years old or older from three academic centres in the UK will be used to to develop risk stratification models. Radiological, clinical and patient characteristics will be combined in multivariable logistic regression models to predict nodule malignancy. Data from over 1000 participants recruited in a prospective phase of the study will be used to evaluate model performance. Discrimination, calibration and clinical utility measures will be presented.
Tài liệu tham khảo
citation_journal_title=Radiology; citation_title=Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017; citation_author=H MacMahon, DP Naidich, JM Goo, KS Lee, ANC Leung, JR Mayo, AC Mehta, Y Ohno, CA Powell, M Prokop, GD Rubin, CM Schaefer-Prokop, WD Travis, PE Van Schil, AA Bankier; citation_volume=284; citation_issue=1; citation_publication_date=2017; citation_pages=228-43; citation_doi=10.1148/radiol.2017161659; citation_id=CR1
citation_journal_title=Thorax; citation_title=British Thoracic Society guidelines for the investigation and management of pulmonary nodules: accredited by NICE; citation_author=MEJ Callister, DR Baldwin, AR Akram, S Barnard, P Cane, J Draffan, K Franks, F Gleeson, R Graham, P Malhotra, M Prokop, K Rodger, M Subesinghe, D Waller, I Woolhouse; citation_volume=70; citation_issue=Suppl 2; citation_publication_date=2015; citation_pages=1-54; citation_doi=10.1136/thoraxjnl-2015-207168; citation_id=CR2
citation_journal_title=Arch Intern Med; citation_title=The probability of malignancy in solitary pulmonary nodules: application to small radiologically indeterminate nodules; citation_author=SJ Swensen, MD Silverstein, DM Ilstrup, CD Schleck, ES Edell; citation_volume=157; citation_issue=8; citation_publication_date=1997; citation_pages=849-55; citation_doi=10.1001/archinte.1997.00440290031002; citation_id=CR3
citation_journal_title=Chest; citation_title=A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules; citation_author=MK Gould, L Ananth, PG Barnett; citation_volume=131; citation_issue=2; citation_publication_date=2007; citation_pages=383-8; citation_doi=10.1378/chest.06-1261; citation_id=CR4
citation_journal_title=Clin Lung Cancer; citation_title=Development and validation of a clinical prediction model to estimate the probability of malignancy in solitary pulmonary nodules in Chinese People; citation_author=Y Li, KZ Chen, J Wang; citation_volume=12; citation_issue=5; citation_publication_date=2011; citation_pages=313-9; citation_doi=10.1016/j.cllc.2011.06.005; citation_id=CR5
citation_journal_title=Respirology; citation_title=Development and validation of diagnostic prediction model for solitary pulmonary nodules; citation_author=K Yonemori, U Tateishi, H Uno, Y Yonemori, K Tsuta, M Takeuchi, Y Matsuno, Y Fujiwara, H Asamura, M Kusumoto; citation_volume=12; citation_issue=6; citation_publication_date=2007; citation_pages=856-62; citation_doi=10.1111/j.1440-1843.2007.01158.x; citation_id=CR6
citation_journal_title=N Engl J Med; citation_title=Probability of cancer in pulmonary nodules detected on first screening CT; citation_author=A McWilliams, MC Tammemagi, JR Mayo, H Roberts, G Liu, K Soghrati, K Yasufuku, S Martel, F Laberge, M Gingras, S Atkar-Khattra, CD Berg, K Evans, R Finley, J Yee, J English, P Nasute, J Goffin, S Puksa, L Stewart, S Tsai, MR Johnston, D Manos, G Nicholas, GD Goss, JM Seely, K Amjadi, A Tremblay, P Burrowes, P MacEachern, R Bhatia, MS Tsao, S Lam; citation_volume=369; citation_issue=10; citation_publication_date=2013; citation_pages=910-9; citation_doi=10.1056/NEJMoa1214726; citation_id=CR7
citation_journal_title=Chest; citation_title=Clinical prediction model to characterize pulmonary nodules: validation and added value of18F-fluorodeoxyglucose positron emission tomography; citation_author=GJ Herder, H Van Tinteren, RP Golding, PJ Kostense, EF Comans, EF Smit, OS Hoekstra; citation_volume=128; citation_issue=4; citation_publication_date=2005; citation_pages=2490-6; citation_doi=10.1378/chest.128.4.2490; citation_id=CR8
citation_journal_title=Lung Cancer; citation_title=How should pulmonary nodules be optimally investigated and managed?; citation_author=MEJ Callister, DR Baldwin; citation_volume=91; citation_publication_date=2016; citation_pages=48-55; citation_doi=10.1016/j.lungcan.2015.10.018; citation_id=CR9
citation_journal_title=Lung Cancer; citation_title=Risk of malignancy in pulmonary nodules: a validation study of four prediction models; citation_author=A Al-Ameri, P Malhotra, H Thygesen, PK Plant, S Vaidyanathan, S Karthik, A Scarsbrook, MEJ Callister; citation_volume=89; citation_issue=1; citation_publication_date=2015; citation_pages=27-30; citation_doi=10.1016/j.lungcan.2015.03.018; citation_id=CR10
citation_journal_title=Stat Methods Med Res; citation_title=Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models; citation_author=PC Austin, EW Steyerberg; citation_volume=26; citation_issue=2; citation_publication_date=2017; citation_pages=796-808; citation_doi=10.1177/0962280214558972; citation_id=CR11
citation_journal_title=J Clin Epidemiol; citation_title=A simulation study of the number of events per variable in logistic regression analysis; citation_author=P Peduzzi, J Concato, E Kemper, TR Holford, AR Feinstem; citation_volume=49; citation_issue=12; citation_publication_date=1996; citation_pages=1373-9; citation_doi=10.1016/S0895-4356(96)00236-3; citation_id=CR12
citation_journal_title=Int J Epidemiol; citation_title=The use of fractional polynomials to model continuous risk variables in epidemiology; citation_author=P Royston, G Ambler, W Sauerbrei; citation_volume=28; citation_issue=5; citation_publication_date=1999; citation_pages=964-74; citation_doi=10.1093/ije/28.5.964; citation_id=CR13
R Core Team R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.
https://www.R-project.org/
.
citation_journal_title=Stat Med; citation_title=Multiple imputation using chained equations: issues and guidance for practice; citation_author=IR White, P Royston, AM Wood; citation_volume=30; citation_issue=4; citation_publication_date=2011; citation_pages=377-99; citation_doi=10.1002/sim.4067; citation_id=CR15
citation_title=Multiple imputation and its application; citation_publication_date=2013; citation_id=CR16; citation_author=JR Carpenter; citation_author=MG Kenward; citation_publisher=Wiley
citation_journal_title=BMC Med Res Methodol; citation_title=Combining estimates of interest in prognostic modelling studies after multiple imputation: current practice and guidelines; citation_author=A Marshall, DG Altman, RL Holder, P Royston; citation_volume=9; citation_issue=1; citation_publication_date=2009; citation_pages=1-8; citation_doi=10.1186/1471-2288-9-57; citation_id=CR17
citation_title=Clinical prediction models: a practical approach to development, validation, and updating; citation_publication_date=2009; citation_id=CR18; citation_author=EW Steyerberg; citation_publisher=Springer
citation_journal_title=Eur Urol; citation_title=Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD Statement; citation_author=GS Collins, JB Reitsma, DG Altman, KGM Moons; citation_volume=67; citation_issue=6; citation_publication_date=2015; citation_pages=1142-51; citation_doi=10.1016/j.eururo.2014.11.025; citation_id=CR19