Multipotent adult germ-line stem cells, like other pluripotent stem cells, can be killed by cytotoxic T lymphocytes despite low expression of major histocompatibility complex class I molecules
Tóm tắt
Multipotent adult germ-line stem cells (maGSCs) represent a new pluripotent cell type that can be derived without genetic manipulation from spermatogonial stem cells (SSCs) present in adult testis. Similarly to induced pluripotent stem cells (iPSCs), they could provide a source of cellular grafts for new transplantation therapies of a broad variety of diseases. To test whether these stem cells can be rejected by the recipients, we have analyzed whether maGSCs and iPSCs can become targets for cytotoxic T lymphocytes (CTL) or whether they are protected, as previously proposed for embryonic stem cells (ESCs). We have observed that maGSCs can be maintained in prolonged culture with or without leukemia inhibitory factor and/or feeder cells and still retain the capacity to form teratomas in immunodeficient recipients. They were, however, rejected in immunocompetent allogeneic recipients, and the immune response controlled teratoma growth. We analyzed the susceptibility of three maGSC lines to CTL in comparison to ESCs, iPSCs, and F9 teratocarcinoma cells. Major histocompatibility complex (MHC) class I molecules were not detectable by flow cytometry on these stem cell lines, apart from low levels on one maGSC line (maGSC Stra8 SSC5). However, using a quantitative real time PCR analysis H2K and B2m transcripts were detected in all pluripotent stem cell lines. All pluripotent stem cell lines were killed in a peptide-dependent manner by activated CTLs derived from T cell receptor transgenic OT-I mice after pulsing of the targets with the SIINFEKL peptide. Pluripotent stem cells, including maGSCs, ESCs, and iPSCs can become targets for CTLs, even if the expression level of MHC class I molecules is below the detection limit of flow cytometry. Thus they are not protected against CTL-mediated cytotoxicity. Therefore, pluripotent cells might be rejected after transplantation by this mechanism if specific antigens are presented and if specific activated CTLs are present. Our results show that the adaptive immune system has in principle the capacity to kill pluripotent and teratoma forming stem cells. This finding might help to develop new strategies to increase the safety of future transplantations of in vitro differentiated cells by exploiting a selective immune response against contaminating undifferentiated cells. This article was reviewed by Bhagirath Singh, Etienne Joly and Lutz Walter.
Tài liệu tham khảo
Murry CE, Keller G: Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008, 132: 661-680. 10.1016/j.cell.2008.02.008.
Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A, Shinohara T: Generation of pluripotent stem cells from neonatal mouse testis. Cell. 2004, 119: 1001-1012. 10.1016/j.cell.2004.11.011.
Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G: Pluripotency of spermatogonial stem cells from adult mouse testis. Nature. 2006, 440: 1199-1203. 10.1038/nature04697.
Seandel M, James D, Shmelkov SV, Falciatori I, Kim J, Chavala S, Scherr DS, Zhang F, Torres R, Gale NW, Yancopoulos GD, Murphy A, Valenzuela DM, Hobbs RM, Pandolfi PP, Rafii S: Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature. 2007, 449: 346-350. 10.1038/nature06129.
Ko K, Tapia N, Wu G, Kim JB, Bravo MJ, Sasse P, Glaser T, Ruau D, Han DW, Greber B, Hausdorfer K, Sebastiano V, Stehling M, Fleischmann BK, Brustle O, Zenke M, Scholer HR: Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell. 2009, 5: 87-96. 10.1016/j.stem.2009.05.025.
Cinalli RM, Rangan P, Lehmann R: Germ cells are forever. Cell. 2008, 132: 559-562. 10.1016/j.cell.2008.02.003.
Guan K, Wolf F, Becker A, Engel W, Nayernia K, Hasenfuss G: Isolation and cultivation of stem cells from adult mouse testes. Nat Protoc. 2009, 4: 143-154. 10.1038/nprot.2008.242.
Zovoilis A, Nolte J, Drusenheimer N, Zechner U, Hada H, Guan K, Hasenfuss G, Nayernia K, Engel W: Multipotent adult germline stem cells and embryonic stem cells have similar microRNA profiles. Mol Hum Reprod. 2008, 14: 521-529. 10.1093/molehr/gan044.
Zechner U, Nolte J, Wolf M, Shirneshan K, Hajj NE, Weise D, Kaltwasser B, Zovoilis A, Haaf T, Engel W: Comparative methylation profiles and telomerase biology of mouse multipotent adult germline stem cells and embryonic stem cells. Mol Hum Reprod. 2009, 15: 345-353. 10.1093/molehr/gap023.
Guan K, Wagner S, Unsold B, Maier LS, Kaiser D, Hemmerlein B, Nayernia K, Engel W, Hasenfuss G: Generation of functional cardiomyocytes from adult mouse spermatogonial stem cells. Circ Res. 2007, 100: 1615-1625. 10.1161/01.RES.0000269182.22798.d9.
Glaser T, Opitz T, Kischlat T, Konang R, Sasse P, Fleischmann BK, Engel W, Nayernia K, Brüstle O: Adult germ line stem cells as a source of functional neurons and glia. Stem Cells. 2008, 26: 2434-2443. 10.1634/stemcells.2008-0163.
Streckfuss-Bömeke K, Vlasov A, Hülsmann S, Yin D, Nayernia K, Engel W, Hasenfuss G, Guan K: Generation of functional neurons and glia from multipotent adult mouse germ-line stem cells. Stem Cell Res. 2009, 2: 139-154. 10.1016/j.scr.2008.09.001.
Mardanpour P, Guan K, Nolte J, Lee JH, Hasenfuss G, Engel W, Nayernia K: Potency of germ cells and its relevance for regenerative medicine. J Anat. 2008, 213: 26-29. 10.1111/j.1469-7580.2008.00930.x.
Conrad S, Renninger M, Hennenlotter J, Wiesner T, Just L, Bonin M, Aicher W, Buhring HJ, Mattheus U, Mack A, Wagner HJ, Minger S, Matzkies M, Reppel M, Hescheler J, Sievert KD, Stenzl A, Skutella T: Generation of pluripotent stem cells from adult human testis. Nature. 2008, 456: 344-349. 10.1038/nature07404.
Kossack N, Meneses J, Shefi S, Nguyen HN, Chavez S, Nicholas C, Gromoll J, Turek PJ, Reijo-Pera RA: Isolation and Characterization of Pluripotent Human Spermatogonial Stem Cell-Derived Cells. Stem Cells. 2009, 27: 138-149. 10.1634/stemcells.2008-0439.
Golestaneh N, Kokkinaki M, Pant D, Jiang J, Destefano D, Fernandez-Bueno C, Rone JD, Haddad BR, Gallicano GI, Dym M: Pluripotent Stem Cells Derived from Adult Human Testes. Stem Cells Dev. 2009,
Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, 126: 663-676. 10.1016/j.cell.2006.07.024.
Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R: In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007, 448: 318-324. 10.1038/nature05944.
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA: Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007, 318: 1917-1920. 10.1126/science.1151526.
Bradley JA, Bolton EM, Pedersen RA: Stem cell medicine encounters the immune system. Nat Rev Immunol. 2002, 2: 859-871. 10.1038/nri934.
Saric T, Frenzel LP, Hescheler J: Immunological barriers to embryonic stem cell-derived therapies. Cells Tissues Organs. 2008, 188: 78-90. 10.1159/000118784.
Nishikawa S, Goldstein RA, Nierras CR: The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol. 2008, 9: 725-729. 10.1038/nrm2466.
Daley GQ, Scadden DT: Prospects for stem cell-based therapy. Cell. 2008, 132: 544-548. 10.1016/j.cell.2008.02.009.
Boghaert ER, Sridharan L, Khandke KM, Armellino D, Ryan MG, Myers K, Harrop R, Kunz A, Hamann PR, Marquette K, Dougher M, DiJoseph JF, Damle NK: The oncofetal protein, 5T4, is a suitable target for antibody-guided anti-cancer chemotherapy with calicheamicin. Int J Oncol. 2008, 32: 221-234.
Engelhard VH, Bullock TN, Colella TA, Sheasley SL, Mullins DW: Antigens derived from melanocyte differentiation proteins: self-tolerance, autoimmunity, and use for cancer immunotherapy. Immunol Rev. 2002, 188: 136-146. 10.1034/j.1600-065X.2002.18812.x.
Dressel R, Schindehütte J, Kuhlmann T, Elsner L, Novota P, Baier PC, Schillert A, Bickeböller H, Herrmann T, Trenkwalder C, Paulus W, Mansouri A: The tumorigenicity of mouse embryonic stem cells and in vitro differentiated neuronal cells is controlled by the recipients' immune response. PLoS ONE. 2008, 3: e2622-10.1371/journal.pone.0002622.
Abdullah Z, Saric T, Kashkar H, Baschuk N, Yazdanpanah B, Fleischmann BK, Hescheler J, Krönke M, Utermöhlen O: Serpin-6 expression protects embryonic stem cells from lysis by antigen-specific CTL. J Immunol. 2007, 178: 3390-3399.
Voss AK, Thomas T, Gruss P: Germ line chimeras from female ES cells. Exp Cell Res. 1997, 230: 45-49. 10.1006/excr.1996.3418.
Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC: Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA. 1993, 90: 8424-8428. 10.1073/pnas.90.18.8424.
Cheng J, Dutra A, Takesono A, Garrett-Beal L, Schwartzberg PL: Improved generation of C57BL/6J mouse embryonic stem cells in a defined serum-free media. Genesis. 2004, 39: 100-104. 10.1002/gene.20031.
Meissner A, Wernig M, Jaenisch R: Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol. 2007, 25: 1177-1181. 10.1038/nbt1335.
Nayernia K, Li M, Jaroszynski L, Khusainov R, Wulf G, Schwandt I, Korabiowska M, Michelmann HW, Meinhardt A, Engel W: Stem cell based therapeutical approach of male infertility by teratocarcinoma derived germ cells. Hum Mol Genet. 2004, 13: 1451-1460. 10.1093/hmg/ddh166.
Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR: T cell receptor antagonist peptides induce positive selection. Cell. 1994, 76: 17-27. 10.1016/0092-8674(94)90169-4.
Dressel R, Raja SM, Höning S, Seidler T, Froelich CJ, von Figura K, Günther E: Granzyme-mediated cytotoxicity does not involve the mannose 6-phosphate receptors on target cells. J Biol Chem. 2004, 279: 20200-20210. 10.1074/jbc.M313108200.
Dressel R, Elsner L, Quentin T, Walter L, Günther E: Heat shock protein 70 is able to prevent heat shock-induced resistance of target cells to CTL. J Immunol. 2000, 164: 2362-2371.
Oulad-Abdelghani M, Bouillet P, Decimo D, Gansmuller A, Heyberger S, Dolle P, Bronner S, Lutz Y, Chambon P: Characterization of a premeiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene. J Cell Biol. 1996, 135: 469-477. 10.1083/jcb.135.2.469.
Baltus AE, Menke DB, Hu YC, Goodheart ML, Carpenter AE, de Rooij DG, Page DC: In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat Genet. 2006, 38: 1430-1434. 10.1038/ng1919.
Zhou Q, Li Y, Nie R, Friel P, Mitchell D, Evanoff RM, Pouchnik D, Banasik B, McCarrey JR, Small C, Griswold MD: Expression of stimulated by retinoic acid gene 8 (Stra8) and maturation of murine gonocytes and spermatogonia induced by retinoic acid in vitro. Biol Reprod. 2008, 78: 537-545. 10.1095/biolreprod.107.064337.
Anderson EL, Baltus AE, Roepers-Gajadien HL, Hassold TJ, de Rooij DG, van Pelt AM, Page DC: Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci USA. 2008, 105: 14976-14980. 10.1073/pnas.0807297105.
Joly E, Oldstone MB: Neuronal cells are deficient in loading peptides onto MHC class I molecules. Neuron. 1992, 8: 1185-1190. 10.1016/0896-6273(92)90138-4.
Ljunggren HG, Paabo S, Cochet M, Kling G, Kourilsky P, Karre K: Molecular analysis of H-2-deficient lymphoma lines. Distinct defects in biosynthesis and association of MHC class I heavy chains and beta 2-microglobulin observed in cells with increased sensitivity to NK cell lysis. J Immunol. 1989, 142: 2911-2917.
Powis SJ, Townsend AR, Deverson EV, Bastin J, Butcher GW, Howard JC: Restoration of antigen presentation to the mutant cell line RMA-S by an MHC-linked transporter. Nature. 1991, 354: 528-531. 10.1038/354528a0.
Medema JP, de Jong J, Peltenburg LT, Verdegaal EM, Gorter A, Bres SA, Franken KL, Hahne M, Albar JP, Melief CJ, Offringa R: Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci USA. 2001, 98: 11515-11520. 10.1073/pnas.201398198.
Balaji KN, Schaschke N, Machleidt W, Catalfamo M, Henkart PA: Surface cathepsin B protects cytotoxic lymphocytes from self-destruction after degranulation. J Exp Med. 2002, 196: 493-503. 10.1084/jem.20011836.
Lensch MW, Schlaeger TM, Zon LI, Daley GQ: Teratoma formation assays with human embryonic stem cells: a rationale for one type of human-animal chimera. Cell Stem Cell. 2007, 1: 253-258. 10.1016/j.stem.2007.07.019.
Koch CA, Geraldes P, Platt JL: Immunosuppression by embryonic stem cells. Stem Cells. 2008, 26: 89-98. 10.1634/stemcells.2007-0151.
Blum B, Benvenisty N: The tumorigenicity of human embryonic stem cells. Adv Cancer Res. 2008, 100: 133-158. full_text.
Knoepfler PS: Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells. 2009, 27: 1050-1056. 10.1002/stem.37.
Robertson NJ, Brook FA, Gardner RL, Cobbold SP, Waldmann H, Fairchild PJ: Embryonic stem cell-derived tissues are immunogenic but their inherent immune privilege promotes the induction of tolerance. Proc Natl Acad Sci USA. 2007, 104: 20920-20925. 10.1073/pnas.0710265105.
Tian L, Catt JW, O'Neill C, King NJ: Expression of immunoglobulin superfamily cell adhesion molecules on murine embryonic stem cells. Biol Reprod. 1997, 57: 561-568. 10.1095/biolreprod57.3.561.
Bonde S, Zavazava N: Immunogenicity and engraftment of mouse embryonic stem cells in allogeneic recipients. Stem Cells. 2006, 24: 2192-2201. 10.1634/stemcells.2006-0022.
Magliocca JF, Held IK, Odorico JS: Undifferentiated murine embryonic stem cells cannot induce portal tolerance but may possess immune privilege secondary to reduced major histocompatibility complex antigen expression. Stem Cells Dev. 2006, 15: 707-717. 10.1089/scd.2006.15.707.
Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB, Masino A, Muskheli V, Pabon L, Reinecke H, Murry CE: Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. Faseb J. 2007, 21: 1345-1357. 10.1096/fj.06-6769com.
Wu DC, Boyd AS, Wood KJ: Embryonic stem cells and their differentiated derivatives have a fragile immune privilege but still represent novel targets of immune attack. Stem Cells. 2008, 26: 1939-1950. 10.1634/stemcells.2008-0078.
Draper JS, Pigott C, Thomson JA, Andrews PW: Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat. 2002, 200: 249-258. 10.1046/j.1469-7580.2002.00030.x.
Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Reubinoff B, Mandelboim O, Benvenisty N: Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA. 2002, 99: 9864-9869. 10.1073/pnas.142298299.
Li L, Baroja ML, Majumdar A, Chadwick K, Rouleau A, Gallacher L, Ferber I, Lebkowski J, Martin T, Madrenas J, Bhatia M: Human embryonic stem cells possess immune-privileged properties. Stem Cells. 2004, 22: 448-456. 10.1634/stemcells.22-4-448.
Swijnenburg RJ, Schrepfer S, Cao F, Pearl JI, Xie X, Connolly AJ, Robbins RC, Wu JC: In vivo imaging of embryonic stem cells reveals patterns of survival and immune rejection following transplantation. Stem Cells Dev. 2008, 17: 1023-1029. 10.1089/scd.2008.0091.
Swijnenburg RJ, Tanaka M, Vogel H, Baker J, Kofidis T, Gunawan F, Lebl DR, Caffarelli AD, de Bruin JL, Fedoseyeva EV, Robbins RC: Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation. 2005, 112: I166-172.
Wagner H, Starzinski-Powitz A, Rollinghoff M, Golstein P, Jakob H: T-cell-mediated cytotoxic immune responses to F9 teratocarcinoma cells: cytolytic effector T cells lyse H-2-negative F9 cells and syngeneic spermatogonia. J Exp Med. 1978, 147: 251-264. 10.1084/jem.147.1.251.
Bikoff EK, Jaffe L, Ribaudo RK, Otten GR, Germain RN, Robertson EJ: MHC class I surface expression in embryo-derived cell lines inducible with peptide or interferon. Nature. 1991, 354: 235-238. 10.1038/354235a0.
Brower RC, England R, Takeshita T, Kozlowski S, Margulies DH, Berzofsky JA, Delisi C: Minimal requirements for peptide mediated activation of CD8+ CTL. Mol Immunol. 1994, 31: 1285-1293. 10.1016/0161-5890(94)90079-5.
Purbhoo MA, Irvine DJ, Huppa JB, Davis MM: T cell killing does not require the formation of a stable mature immunological synapse. Nat Immunol. 2004, 5: 524-530. 10.1038/ni1058.
Sykulev Y, Joo M, Vturina I, Tsomides TJ, Eisen HN: Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity. 1996, 4: 565-571. 10.1016/S1074-7613(00)80483-5.
Frenzel LP, Abdullah Z, Kriegeskorte AK, Dieterich R, Lange N, Busch DH, Krönke M, Utermöhlen O, Hescheler J, Saric T: Role of NKG2D-ligands and ICAM-1 in NK cell-mediated Lysis of Murine Embryonic Stem Cells and Embryonic Stem Cell-derived Cardiomyocytes. Stem Cells. 2009, 27: 307-316. 10.1634/stemcells.2008-0528.
Chowdhury D, Lieberman J: Death by a thousand cuts: granzyme pathways of programmed cell death. Annu Rev Immunol. 2008, 26: 389-420. 10.1146/annurev.immunol.26.021607.090404.
Pipkin ME, Lieberman J: Delivering the kiss of death: progress on understanding how perforin works. Curr Opin Immunol. 2007, 19: 301-308. 10.1016/j.coi.2007.04.011.