Negative ion–molecule reactions of ozone and their implications on the thermochemistry of O3−

Journal of Chemical Physics - Tập 68 Số 1 - Trang 247-260 - 1978
Chava Lifshitz1, Richard L. C. Wu1, T. O. Tiernan1, D. T. Terwilliger1
1The Brehm Laboratory and Department of Chemistry, Wright State University, Dayton, Ohio 45435

Tóm tắt

An in-line double mass spectrometer has been employed to determine reaction rate coefficients and excitation functions for several types of negative ion reactions involving ozone. The interactions studied include electron transfer reactions, such as, M−+O3→M+O3− (where M−=O−, OH−, F−, Cl−, Br−, I−, S−, SH−, Cl−2, C2H−, NO2−, and CO3−) and particle transfer reactions, such as MO−+O2→M+O3− (where MO−=O2−, NO2−, NO3−, CO3−). Translational energy thresholds have been determined for those reactions which are endothermic by applying exact Doppler corrections for the thermal motion of the neutral as well as corrections for the translational energy distribution of the projecticle ions. These experiments place a lower limit of 2.26+0.04−0.06 eV on the electron affinity of ozone. This value is in excellent agreement with the value computed from the bond dissociation energy of O3− in its most stable configuration, D00(O−–O2) =1.80 eV, as deduced from measurements of the translational energy thresholds for the collisional dissociation process, O−3+M→O−+O2+M, where M=He, Ar. Further implications of these experiments with respect to the structure, thermochemistry, and excited states of O−3 are discussed.

Từ khóa


Tài liệu tham khảo

1967, Planet. Space Sci., 15, 373, 10.1016/0032-0633(67)90201-2

1967, J. Geophys. Res., 72, 3795, 10.1029/JZ072i015p03795

1969, Can. J. Chem., 47, 1815, 10.1139/v69-296

1970, Acc. Chem. Res., 3, 402, 10.1021/ar50036a002

1973, J. Chem. Phys., 58, 5267, 10.1063/1.1679139

1974, J. Chem. Phys., 61, 3181, 10.1063/1.1682474

1976, J. Geophys. Res., 81, 4454, 10.1029/JC081i024p04454

1976, Science, 194, 544, 10.1126/science.194.4264.544

1972, J. Chem. Soc. Faraday Trans. I, 68, 627, 10.1039/f19726800627

1976, Phys. Lett. A, 59

1977, J. Chem. Phys., 67, 2874, 10.1063/1.435155

1971, J. Geophys. Res., 76, 4596, 10.1029/JA076i019p04596

1972, Phys. Rev. A, 5, 2598, 10.1103/PhysRevA.5.2598

1975, J. Chem. Phys., 62, 3829, 10.1063/1.430941

1971, J. Chem. Phys., 55, 2733, 10.1063/1.1676488

1965, J. Phys. Chem., 69, 2562, 10.1021/j100892a013

1972, Int. J. Quantum Chem., 6, 181, 10.1002/qua.560060114

1973, J. Chem. Phys., 59, 3162, 10.1063/1.1680458

1972, Chem. Phys. Lett., 15, 257, 10.1016/0009-2614(72)80162-3

1973, J. Chem. Phys., 59, 4125, 10.1063/1.1680604

1974, J. Chem. Phys., 61, 1300, 10.1063/1.1682053

1970, Chem. Phys. Lett., 7, 469, 10.1016/0009-2614(70)80339-6

1975, J. Chem. Phys., 63, 1612, 10.1063/1.431487

1976, J. Chem. Phys., 65, 5267, 10.1063/1.433026

1971, J. Chem. Phys., 55, 5692, 10.1063/1.1675740

1973, J. Chem. Phys., 59, 3182, 10.1063/1.1680459

1974, Adv. Mass Spectrom., 6, 295

1976, J. Chem. Phys., 65, 5474, 10.1063/1.433006

1970, J. Chem. Phys., 3, 2107

1971, J. Chem. Phys., 55, 3419, 10.1063/1.1676593

1976, Int. J. Chem. Kinet., 8, 801, 10.1002/kin.550080602

1937, Phys. Rev., 51, 450, 10.1103/PhysRev.51.450

1937, Rev. Mod. Phys., 9, 69, 10.1103/RevModPhys.9.69

1971, J. Chem. Phys., 55, 2746, 10.1063/1.1676489

1971, Chem. Phys. Lett., 11, 552, 10.1016/0009-2614(71)87002-1

1973, J. Chem. Phys., 58, 3942, 10.1063/1.1679751

1977, Int. J. Mass Spectrom. Ion Phys., 24, 285, 10.1016/0020-7381(77)80036-3

1977, J. Chem. Phys., 67, 2381, 10.1063/1.435078

1977, J. Chem. Phys., 66, 4520, 10.1063/1.433705

1972, Phys. Rev. A, 6, 631, 10.1103/PhysRevA.6.631

1972, J. Chem. Phys., 56, 2281, 10.1063/1.1677532

1977, Chem. Phys. Lett., 51, 211, 10.1016/0009-2614(77)80386-2

1973, J. Chem. Phys., 58, 5502, 10.1063/1.1679172

1975, J. Phys. Chem. Ref. Data, 4, 539, 10.1063/1.555524

1972, J. Chem. Phys., 57, 5331, 10.1063/1.1678225