Hypoxia induces a complex response of globin expression in zebrafish(Danio rerio)

Journal of Experimental Biology - Tập 209 Số 11 - Trang 2129-2137 - 2006
Anja Roesner1, Thomas Hankeln2, Thorsten Burmester1
1Institute of Zoology, University of Mainz, D-55099 Mainz, Germany
2Institute of Molecular Genetics, University of Mainz, D-55099 Mainz, Germany

Tóm tắt

SUMMARY

Unlike most mammals, many fish species live and survive in environments with low or changing levels of oxygen. Respiratory proteins like hemoglobin or myoglobin bind or store oxygen, thus enhancing its availability to the respiratory chain in the mitochondria. Here we investigate by means of quantitative real-time PCR the changes of hemoglobin, myoglobin, neuroglobin,cytoglobin and globin X mRNA in zebrafish (Danio rerio) exposed to mild (PO2=∼8.6 kPa) or severe(PO2=∼4.1 kPa) hypoxia. Neuroglobin and myoglobin protein levels were investigated by western blotting. Whereas mild hypoxia caused only minor changes of mRNA levels, strong hypoxia enhanced mRNA levels of the control genes (lactate dehydrogenase A and phosphoglycerate kinase 1). Surprisingly, levels of hemoglobin α and β mRNA were significantly reduced under severe hypoxia. Myoglobin mRNA and protein in heart mildly increased, in line with its proposed oxygen supply function. Likewise,neuroglobin mRNA and protein significantly increased in brain (up to 5.7-fold at the protein level), but not in eye. This observation, firstly, suggests physiological differences of zebrafish eye and brain under hypoxia, and secondly, indicates an important role of neuroglobin in oxidative metabolism,probably oxygen supply within neurons. There was little change in the expression of the two cytoglobin genes. Globin X mRNA significantly decreased under hypoxia, pointing to a functional linkage to oxygen-dependent metabolism.

Từ khóa


Tài liệu tham khảo

Affonso, E. G., Polez, V. L., Correa, C. F., Mazon, A. F.,Araujo, M. R., Moraes, G. and Rantin, F. T. (2002). Blood parameters and metabolites in the teleost fish Colossoma macropomumexposed to sulfide or hypoxia. Comp. Biochem. Physiol.133C,375-382.

Awenius, C., Hankeln, T. and Burmester, T.(2001). Neuroglobins from the zebrafish Danio rerio and the pufferfish Tetraodon nigroviridis. Biochem.Biophys. Res. Commun.287,418-421.

Bentmann, A., Schmidt, M., Reuss, S., Wolfrum, U., Hankeln, T. and Burmester, T. (2005). Divergent distribution in vascular and avascular mammalian retinae links neuroglobin to cellular respiration. J. Biol. Chem.280,20660-20665.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72,248-254.

Brunori, M., Giuffrè, A., Nienhaus, K., Nienhaus, G. U.,Scandurra, F. M. and Vallone, B. (2005). Neuroglobin, nitric oxide, and oxygen: functional pathways and conformational changes. Proc. Natl. Acad. Sci. USA102,8483-8488.

Burmester, T. and Hankeln, T. (2004). Neuroglobin: a respiratory protein of the nervous system. News Physiol. Sci.19,110-113.

Burmester, T., Weich, B., Reinhardt, S. and Hankeln, T.(2000). A vertebrate globin expressed in the brain. Nature407,520-523.

Burmester, T., Ebner, B., Weich, B. and Hankeln, T.(2002). Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol. Biol. Evol.19,416-421.

Cossins, A. R. and Crawford, D. L. (2005). Fish as models for environmental genomics. Nat. Rev. Genet.6, 324-333.

Dalla Via, J., van den Thillart, G., Cattani, O. and de Zwaan,A. (1994). Influence of longterm hypoxia exposure on the energy metabolism of Solea solea. II. Intermediary metabolism in blood, liver, and muscle. Mar. Ecol. Prog. Ser.111, 17-27.

Fordel, E., Geuens, E., Dewilde, S., Rottiers, P., Carmeliet,P., Grooten, J. and Moens, L. (2004). Cytoglobin expression is upregulated in all tissues upon hypoxia: an in vitro and in vivo study by quantitative real-time PCR. Biochem. Biophys. Res. Commun.319,342-348.

Fuchs, C., Heib, V., Kiger, L., Haberkamp, M., Roesner, A.,Schmidt, A., Hamdane, D., Marden, M. C., Hankeln, T. and Burmester, T.(2004). Zebrafish reveals different and conserved features of vertebrate neuroglobin gene structure, expression pattern and ligand binding. J. Biol. Chem.279,24116-24122.

Fuchs, C., Luckhardt, A., Gerlach, F., Burmester, T. and Hankeln, T. (2005). Duplicated cytoglobin genes in teleost fishes. Biochem. Biophys. Res. Commun.337,216-223.

Gracey, A. Y., Troll, J. V. and Somero, G. N.(2001). Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis.Proc. Natl. Acad. Sci. USA98,1993-1998.

Hankeln, T., Ebner, B., Fuchs, C., Gerlach, F., Haberkamp, M.,Laufs, T., Roesner, A., Schmidt, M., Weich, B., Wystub, S. et al.(2005). Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. J. Inorg. Biochem.99,110-119.

Hardison, R. (1998). Hemoglobins from bacteria to man: evolution of different patterns of gene expression. J. Exp. Biol.201,1099-1117.

Herold, S., Fago, A., Weber, R. E., Dewilde, S. and Moens,L. (2004). Reactivity studies of the Fe(III) and Fe(II)NO forms of human neuroglobin reveal a potential role against oxidative stress. J. Biol. Chem.279,22841-22847.

Hoppeler, H. and Vogt, M. (2001). Muscle tissue adaptations to hypoxia. J. Exp. Biol.204,3133-3139.

Jensen, F. B. (2004). Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiol. Scand.182,215-227.

Jensen, F. B., Nikinmaa, M. and Weber, R. E.(1993). Environmental perturbations of oxygen ransport in teleost fishes: causes, consequences and compensations. In Fish Ecophysiology (ed. J. C. Rankin and F. B. Jensen), pp.161-179. London: Chapman & Hall.

Jezek, P. and Hlavata, L. (2005). Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int. J. Biochem. Cell Biol.37,2478-2503.

Johansson, D., Nilsson, G. E. and Døving, K. B.(1997). Anoxic depression of light-evoked potentials in retina and optic tectum of crucian carp. Neurosci. Lett.237, 73-76.

Levine, B. D. and Stray-Gundersen, J. (2001). The effects of altitude training are mediated primarily by acclimatization,rather than by hypoxic exercise. Adv. Exp. Med. Biol.502, 75-88.

Mammen, P. P. A., Shelton, J. M., Goetsch, S. C., Williams, S. C., Richardson, J. A., Garry, M. G. and Garry, D. J. (2002). Neuroglobin, a novel member of the globin family, is expressed in focal regions of the brain. J. Histochem. Cytochem.50,1591-1598.

Marinsky, C. A., Houston, A. H. and Murad, A.(1990). Effect of hypoxia on hemoglobin isomorph abundances in rainbow trout, Salmo gairdneri. Can. J. Zool.68,884-888.

Nikinmaa, M. (2001). Haemoglobin function in vertebrates: evolutionary changes in cellular regulation in hypoxia. Respir. Physiol.128,317-329.

Nikinmaa, M. (2002). Oxygen-dependent cellular functions -why fishes and their aquatic environment are a prime choice of study. Comp. Biochem. Physiol.133A, 1-16.

Nikinmaa, M. and Rees, R. B. (2005). Oxygen-dependent gene expression in fishes. Am. J. Physiol.288,R1079-R1090.

Nilsson, G. E. (2001). Surviving anoxia with the brain turned on. News Physiol. Sci.16,217-221.

Nilsson, G. E. and Renshaw, G. M. C. (2004). Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark. J. Exp. Biol.207,3131-3139.

Oleksiak, M. F., Churchill, G. A. and Crawford, D. L.(2002). Variation in gene expression within and among natural populations. Nat. Genet.32,261-266.

Padilla, P. A. and Roth, M. B. (2001). Oxygen deprivation causes suspended animation in the zebrafish embryo. Proc. Natl. Acad. Sci. USA98,7331-7335.

Pelster, B. (2002). Developmental plasticity in the cardiovascular system of fish, with special reference to the zebrafish. Comp. Biochem. Physiol.133A,547-553.

Person-Le Ruyet, J., Boeuf, G., Zambonino-Infante, J., Helgason,S. and Le Roux, A. (1998). Short-term physiological changes in turbot and seabream juveniles exposed to exogenous ammonia. Comp. Biochem. Physiol.119A,511-518.

Rees, B. B., Sudradjat, F. A. and Love, J. W.(2001). Acclimation to hypoxia increases survival time of zebrafish, Danio rerio, during lethal hypoxia. J. Exp. Zool.289,266-272.

Reuss, S., Saaler-Reinhardt, S., Weich, B., Wystub, S., Reuss,M., Burmester, T. and Hankeln, T. (2002). Expression analysis of neuroglobin mRNA in rodent tissues. Neuroscience115,645-656.

Roesner, A., Fuchs, C., Hankeln, T. and Burmester, T.(2005). A globin gene of ancient evolutionary origin in lower vertebrates: evidence for two distinct globin families in animals. Mol. Biol. Evol.22,12-22.

Samaja, M., Crespi, T., Guazzi, M. and Vandegriff, K. D.(2003). Oxygen transport in blood at high altitude: role of the hemoglobin-oxygen affinity and impact of the phenomena related to hemoglobin allosterism and red cell function. Eur. J. Appl. Physiol.90,351-359.

Schmidt, M., Gieβl, A., Laufs, T., Hankeln, T., Wolfrum, U. and Burmester, T. (2003). How does the eye breathe? Evidence for neuroglobin-mediated oxygen supply of the mammalian retina. J. Biol. Chem.278,1932-1935.

Schmidt, M., Gerlach, F., Avivi, A., Laufs, T., Wystub, S.,Simpson, J. C., Nevo, E., Saaler-Reinhardt, S., Reuss, S., Hankeln, T. et al. (2004). Cytoglobin is a respiratory protein expressed in connective tissue and neurons that is up-regulated by hypoxia. J. Biol. Chem.279,8063-8069.

Simpson, D. A. C., Feeney, S., Boyle, C. and Stitt, A. W.(2000). Retinal VEGF mRNA measured by SYBR green I fluorescence:a versatile approach to quantitative PCR. Mol. Vis.6, 178-183.

Smith, R. W., Houlihan, D. F., Nilsson, G. E. and Brechin, J. G. (1996). Tissue-specific changes in protein synthesis rates in vivo during anoxia in crucian carp. Am. J. Physiol.271,R897-R904.

Sollid, J., Kjernsli, A., De Angelis, P. M., Røhr, A. K. and Nilsson, G. E. (2005). Cell proliferation and gill morphology in anoxic crucian carp. Am. J. Physiol.289,R1196-R1201.

Sun, Y., Jin, K., Mao, X. O., Zhu, Y. and Greenberg, D. A.(2001). Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury. Proc. Natl. Acad. Sci. USA98,15306-15311.

Timmerman, C. M. and Chapman, L. J. (2004). Behavioral and physiological compensation for chronic hypoxia in the sailfin molly (Poecilia latipinna). Physiol. Biochem. Zool.77,601-610.

Ton, C., Stamatiou, D. and Liew, C. C. (2003). Gene expression profile of zebrafish exposed to hypoxia during development. Physiol. Genomics13,97-106.

van den Thillart, G. and van Waarde, A. (1985). Teleosts in hypoxia: aspects of anaerobic metabolism. Mol. Physiol.8,393-409.

van der Meer, D. L., van den Thillart, G. E., Witte, F., de Bakker, M. A., Besser, J., Richardson, M. K., Spaink, H. P., Leito, J. T. and Bagowski, C. P. (2005). Gene expression profiling of the long-term adaptive response to hypoxia in the gills of adult zebrafish. Am. J. Physiol.289,R1512-R1519.

Weber, R. E. and Jensen, F. B. (1988). Functional adaptations in hemoglobins from ectothermic vertebrates. Annu. Rev. Physiol.50,161-179.

Wenger, R. H. (2006). Mitochondria: oxygen sinks rather than sensors? Med. Hypotheses66,380-383.

Wittenberg, J. B. and Wittenberg, B. A. (2003). Myoglobin function reassessed. J. Exp. Biol.206,2011-2020.