Structural basis for the enhancement of eIF4A helicase activity by eIF4G

Genes and Development - Tập 19 Số 18 - Trang 2212-2223 - 2005
Monika Oberer1, Assen Marintchev, Gerhard Wagner
1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.

Tóm tắt

The eukaryotic translation initiation factors 4A (eIF4A) and 4G (eIF4G) are crucial for the assembly of the translationally active ribosome. Together with eIF4E, they form the eIF4F complex, which recruits the 40S subunit to the 5′ cap of mRNA. The two-domain RNA helicase eIF4A is a very weak helicase by itself, but the activity is enhanced upon interaction with the scaffolding protein eIF4G. Here we show that, albeit both eIF4A domains play a role in binding the middle domain of eIF4G (eIF4G-m, amino acids 745-1003), the main interaction surface is located on the C-terminal domain. We use NMR spectroscopy to define the binding site and find that the contact surface is adjacent to the RNA-, ATP-, and eIF4A-NTD-interacting regions. Mutations of interface residues abrogated binding, confirmed the interface, and showed that the N-terminal end of eIF4G-m interacts with the C-terminal domain of eIF4A. The data suggest that eIF4G-m forms a soft clamp to stabilize the closed interdomain orientation of eIF4A. This model can explain the cooperativity between all binding partners of eIF4A (eIF4G, RNA, ATP) and stimulation of eIF4A activity in the eIF4F complex.

Từ khóa


Tài liệu tham khảo

1988, J. Biol. Chem., 263, 6016, 10.1016/S0021-9258(18)68741-1

10.1101/sqb.2001.66.377

10.1093/emboj/20.15.4233

10.1007/BF00227465

10.1016/S0969-2126(99)80088-4

10.1073/pnas.97.24.13080

10.1023/A:1008392405740

10.1007/BF00197809

10.1017/S0033583502003852

10.1017/S0033583500003589

1993, Curr. Opin. Struct. Biol., 3, 419, 10.1016/S0959-440X(05)80116-2

1998, Mol. Cell. Biol., 18, 334, 10.1128/MCB.18.1.334

10.1016/S0092-8674(03)00975-9

10.1074/jbc.274.30.21297

1997, Mol. Cell. Biol., 17, 6940, 10.1128/MCB.17.12.6940

10.1146/annurev.biochem.73.030403.080419

10.1016/S0969-2126(98)00010-0

10.1074/jbc.M006345200

10.1074/jbc.M406168200

1991, J. Biol. Chem., 266, 19867, 10.1016/S0021-9258(18)54860-2

1999, Mol. Cell. Biol., 19, 7336, 10.1128/MCB.19.11.7336

10.1074/jbc.C100284200

10.1038/337121a0

10.1128/MCB.20.16.6019-6029.2000

10.1021/bi972430g

10.1021/bi9724319

10.1016/S1097-2765(01)00167-8

2005, Q. Rev. Biophys., 37, 1

10.1128/MCB.20.2.468-477.2000

10.1016/S0076-6879(01)39315-1

1992, EMBO J., 11, 2643, 10.1002/j.1460-2075.1992.tb05330.x

1994, EMBO J., 13, 1205, 10.1002/j.1460-2075.1994.tb06370.x

10.1073/pnas.94.23.12366

10.1101/gad.1020902

1996, Mol. Cell. Biol., 16, 6870, 10.1128/MCB.16.12.6870

10.1002/bies.10362

10.1016/S0248-4900(03)00031-5

10.1038/nrm1335

10.1074/jbc.274.18.12236

10.1074/jbc.M100157200

10.1016/S0079-6603(02)72073-4

10.1093/nar/gkg520

10.1073/pnas.0408172101

10.1016/S0959-440X(03)00009-5

Sonenberg N ., Hershey, J.W., and Mathews, M.B. 2000. Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

10.1038/355318a0

10.1073/pnas.98.4.1465

10.1017/S135583820100108X

10.1016/S1097-2765(01)00329-X

10.1016/S1097-2765(03)00006-6

10.1093/nar/22.22.4673

10.1128/MCB.23.1.26-37.2003

10.1261/rna.7191905

2004, Structure (Camb.), 12, 1373, 10.1016/j.str.2004.06.006