Using comparison of multiple strategies in the mathematics classroom: lessons learned and next steps

ZDM - Tập 49 - Trang 585-597 - 2017
Kelley Durkin1, Jon R. Star2, Bethany Rittle-Johnson3
1Peabody Research Institute, Vanderbilt University, Nashville, USA
2Graduate School of Education, Harvard University, Cambridge, USA
3Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, USA

Tóm tắt

Comparison is a fundamental cognitive process that can support learning in a variety of domains, including mathematics. The current paper aims to summarize empirical findings that support recommendations on using comparison of multiple strategies in mathematics classrooms. We report the results of our classroom-based research on using comparison of multiple strategies to help students learn mathematics, which includes short-term experimental research and a year-long randomized controlled trial using a researcher-designed supplemental Algebra I curriculum. Findings indicated that comparing different solution methods for solving the same problem was particularly effective for supporting procedural flexibility across students and for supporting conceptual and procedural knowledge among students with some prior knowledge of one of the methods, but that teachers may need additional support in deciding what to compare and when to use comparison. Drawing from this research, we offer instructional recommendations for the effective use of comparison of multiple strategies for improving mathematics learning, including (a) regular and frequent comparison of alternative strategies, particularly after students have developed some fluency with one initial strategy; (b) judicious selection of strategies and problems to compare; (c) carefully-designed visual presentation of the multiple strategies; and (d) use of small group and whole class discussions around the comparison of multiple strategies, focusing particularly on the similarities, differences, affordances, and constraints of the different approaches. We conclude with suggestions for future work on comparing multiple strategies, including the continuing need for the development of, and rigorous evaluation of, curriculum materials and specific instructional techniques that effectively promote comparison.

Tài liệu tham khảo

Common Core State Standards in Mathematics. (2010). Washington D.C.: National Governors Association Center for Best Practices, Council of Chief State School Officers. Aleven, V. A. W. M. M., & Koedinger, K. R. (2002). An effective metacognitive strategy: Learning by doing and explaining with a computer-based Cognitive Tutor. Cognitive Science, 26(2), 147–179. doi:10.1207/s15516709cog2602_1. Alfieri, L., Nokes-Malach, T. J., & Schunn, C. D. (2013). Learning Through Case Comparisons: A Meta-Analytic Review. Educational Psychologist, 48(2), 87–113. doi:10.1080/00461520.2013.775712. Australian Education Ministers (2006). Statements of learning for mathematics. Carlton South Victoria. Australia: Curriculum Corporations. Ball, D. L. (1993). With an Eye on the Mathematical Horizon: Dilemmas of Teaching Elementary School Mathematics. The Elementary School Journal, 93, 373–397. Catrambone, R., & Holyoak, K. J. (1989). Overcoming contextual limitations on problem-solving transfer. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 1147–1156. doi:10.1037/0278-7393.15.6.1147. Chi, M. T. H. (2000). Self-explaining: The dual processes of generating inference and repairing mental models. In R. Glaser (Ed.), Advances in instructional psychology: Educational design and cognitive science (pp. 161–238). Mahwah, NJ: Lawrence Erlbaum Associates. Cho, S., Holyoak, K. J., & Cannon, T. D. (2007). Analogical reasoning in working memory: Resources shared among relational integration, interference resolution, and maintenance. Memory & Cognition, 35(6), 1445–1455. doi:10.3758/BF03193614. Conner, A., Singletary, L. M., Smith, R. C., Wagner, P. A., & Francisco, R. T. (2014). Teacher support for collective argumentation: A framework for examining how teachers support students’ engagement in mathematical activities. Educational Studies in Mathematics, 86(3), 401–429. doi:10.1007/s10649-014-9532-8. Cummins, D. (1992). Role of analogical reasoning in the induction of problem categories. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(5), 1103–1124. doi:10.1037/0278-7393.18.5.1103. Durkin, K., & Rittle-Johnson, B. (2012). The effectiveness of using incorrect examples to support learning about decimal magnitude. Learning and Instruction, 22, 206–214. doi:10.1016/j.learninstruc.2011.11.001. Fraivillig, J. L., Murphy, L. A., & Fuson, K. (1999). Advancing children’s mathematical thinking in everyday mathematics classrooms. Journal for Research in Mathematics Education, 30, 148–170. doi:10.2307/749608. Franke, M. L., Turrou, A. C., Webb, N. M., Ing, M., Wong, J., Shin, N., & Fernandez, C. (2015). Student engagement with others’ mathematical ideas: The role of teacher invitation and support moves. The Elementary School Journal, 116(1), 126–148. doi:10.1086/683174. Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155–170. doi:10.1207/s15516709cog0702_3. Gentner, D. (1989). The mechanisms of analogical learning. In A. Ortony & S. Vosniadou (Eds.), Similarity and analogical reasoning (pp. 199–241). New York, NY: Cambridge University Press. Gentner, D., Loewenstein, J., & Thompson, L. (2003). Learning and transfer: A general role for analogical encoding. Journal of Educational Psychology, 95, 393–405. doi:10.1037/0022-0663.95.2.393. Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 1–38. doi:10.1016/0010-0285(83)90002-6. Guo, J., & Pang, M. F. (2011). Learning a mathematical concept from comparing examples: The importance of variation and prior knowledge. European Journal of Psychology of Education, 26(4), 495–525. doi:10.1007/s10212-011-0060-y. Hiebert, J., Gallimore, R., Garnier, H., Givvin, K. B., Hollingsworth, H., Jacobs, J., … Kersting, N. (2003). Teaching mathematics in seven countries: Results from the TIMSS 1999 video study (NCES 2003-013). US Department of Education. Washington, DC: National Center for Education Statistics. Hodds, M., Alcock, L., & Inglis, M. (2014). Self-explanation training improves proof comprehension. Journal for Research in Mathematics Education, 45(1), 62–101. doi:10.5951/jresematheduc.45.1.0062. Johnson, D. W., & Johnson, R. T. (1994). Learning together and alone: Cooperative, competitive and individualistic learning (Vol. 4th). Boston, MA: Allyn and Bacon. Kilpatrick, J., Swafford, J. O., & Findell, B. (2001). Adding it up: Helping children learn mathematics. Washington DC: National Academy Press. Kotovsky, L., & Gentner, D. (1996). Comparison and categorization in the development of relational similarity. Child Development, 67, 2797–2822. doi:10.1111/j.1467-8624.1996.tb01889.x. Kullberg, A., Runesson, U., & Marton, F. (2017). What is made possible to learn when using the variation theory of learning in teaching mathematics? ZDM Mathematics Education, 49(4). doi:10.1007/s11858-017-0858-4 Kultusministerkonferenz. (2004). Bildungsstandards im Fach Mathematik für den Primarbereich [Educational Standards in Mathematics for Primary Schools]. Neuwied, Germany: Luchterhand. Lampert, M. (1990). When the problem is not the question and the solution is not the answer: Mathematical knowing and teaching. American Educational Research Journal, 27, 29–63. doi:10.3102/00028312027001029. Loewenstein, J., Thompson, L., & Gentner, D. (1999). Analogical encoding facilitates knowledge transfer in negotiation. Psychonomic Bulletin and Review, 6(4), 586–597. doi:10.3758/BF03212967. Lynch, K., & Star, J. R. (2014a). Exploring teachers’ implementation of comparison in Algebra I. The Journal of Mathematical Behavior, 35, 144–163. doi:10.1016/j.jmathb.2014.07.003. Lynch, K., & Star, J. R. (2014b). Views of struggling students on instruction incorporating multiple strategies in algebra I: an exploratory study. Journal for Research in Mathematics Education, 45(1), 6–18. doi:10.5951/jresematheduc.45.1.0006. Morrison, R. G., Krawczyk, D. C., Holyoak, K. J., Hummel, J. E., Chow, T. W., Miller, B. L., & Knowlton, B. J. (2004). A neurocomputational model of analogical reasoning and its breakdown in frontotemporal lobar degeneration. Journal of Cognitive Neuroscience, 16(2), 260–271. doi:10.1162/089892904322984553. Namy, L. L., & Gentner, D. (2002). Making a silk purse out of two sow’s ears: Young children’s use of comparison in category learning. Journal of Experimental Psychology: General, 131(1), 5–15. doi:10.1037/0096-3445.131.1.5. Newton, K. J., & Star, J. R. (2013). Exploring the Nature and Impact of Model Teaching With Worked Example Pairs. Mathematics Teacher Educator, 2(1), 86–102. doi:10.5951/mathteaceduc.2.1.0086. Newton, K. J., Star, J. R., & Lynch, K. (2010). Understanding the development of flexibility in struggling algebra students. Mathematical Thinking and Learning, 12(4), 282–305. doi:10.1080/10986065.2010.482150. Oakes, L. M., & Ribar, R. J. (2005). A Comparison of infants’ categorization in paired and successive presentation familiarization tasks. Infancy, 7(1), 85–98. doi:10.1207/s15327078in0701_7. Oxford English Dictionary. (2016, August 25). Compare [v.2]. Retrieved from http://www.oed.com/view/Entry/37441?rskey=moZ2mC&result=3&isAdvanced=false. Richland, L. E., Holyoak, K. J., & Stigler, J. W. (2004). Analogy use in eighth-grade mathematics classrooms. Cognition and Instruction, 22, 37–60. doi:10.1207/s1532690Xci2201_2. Richland, L. E., Morrison, R. G., & Holyoak, K. J. (2006). Children’s development of analogical reasoning: Insights from scene analogy problems. Journal of Experimental Child Psychology, 94, 249–273. doi:10.1016/j.jecp.2006.02.002. Richland, L. E., Stigler, J. W., & Holyoak, K. J. (2012). Teaching the conceptual structure of mathematics. Educational Psychologist, 47(3), 189–203. doi:10.1080/00461520.2012.667065. Richland, L. E., Zur, O., & Holyoak, K. J. (2007). Cognitive supports for analogies in the mathematics classroom. Science, 316(5828), 1128–1129. doi:10.1126/science.1142103. Rittle-Johnson, B. (2006). Promoting transfer: Effects of self-explanation and direct instruction. Child Development, 77(1), 1–15. doi:10.1111/j.1467-8624.2006.00852.x. Rittle-Johnson, B., Loehr, A. M., & Durkin, K. (2017). Promoting self-explanation to improve mathematics learning: A meta-analysis and instructional design principles. ZDM Mathematics Education. doi:10.1007/s11858-017-0834-z. Rittle-Johnson, B., Saylor, M., & Swygert, K. E. (2008). Learning from explaining: Does it matter if mom is listening? Journal of Experimental Child Psychology, 100(3), 215–224. doi:10.1016/j.jecp.2007.10.002. Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93, 346–362. doi:10.1037/0022-0663.93.2.346. Rittle-Johnson, B., & Star, J. R. (2007). Does comparing solution methods facilitate conceptual and procedural knowledge? An experimental study on learning to solve equations. Journal of Educational Psychology, 99(3), 561–574. doi:10.1037/0022-0663.99.3.561. Rittle-Johnson, B., & Star, J. R. (2009). Compared with what? The effects of different comparisons on conceptual knowledge and procedural flexibility for equation solving. Journal of Educational Psychology, 101, 529–544. doi:10.1037/a0014224. Rittle-Johnson, B., & Star, J. R. (2011). The power of comparison in learning and instruction: learning outcomes supported by different types of comparisons. Psychology of Learning and Motivation-Advances in Research and Theory, 55, 199. Rittle-Johnson, B., Star, J. R., & Durkin, K. (2009). The importance of prior knowledge when comparing examples: Influences on conceptual and procedural knowledge of equation solving. Journal of Educational Psychology, 101(4), 836–852. doi:10.1037/a0016026. Rittle-Johnson, B., Star, J. R., & Durkin, K. (2012). Developing procedural flexibility: Are novices prepared to learn from comparing procedures? British Journal of Educational Psychology, 82(3), 436–455. doi:10.1111/j.2044-8279.2011.02037.x. Schwartz, D. L., & Bransford, J. D. (1998). A time for telling. Cognition and Instruction, 16, 475–522. doi:10.1207/s1532690xci1604_4. Siegler, R. S., & Chen, Z. (2008). Differentiation and integration: Guiding principles for analyzing cognitive change. Developmental Science, 11(4), 433–448. doi:10.1111/j.1467-7687.2008.00689.x. Silver, E. A., Ghousseini, H., Gosen, D., Charalambous, C., & Strawhun, B. (2005). Moving from rhetoric to praxis: Issues faced by teachers in having students consider multiple solutions for problems in the mathematics classroom. Journal of Mathematical Behavior, 24, 287–301. doi:10.1016/j.jmathb.2005.09.009. Singapore Ministry of Education. (2006). Secondary mathematics syllabuses. Curriculum planning and development division. Retrieved from http://www.moe.gov.sg/education/syllabuses/sciences/files/maths-secondary.pdf. Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Education, 36, 404–411. Star, J. R., Newton, K., Pollack, C., Kokka, K., Rittle-Johnson, B., & Durkin, K. (2015). Student, teacher, and instructional characteristics related to students’ gains in flexibility. Contemporary Educational Psychology, 41, 198–208. doi:10.1016/j.cedpsych.2015.03.001. Star, J. R., Pollack, C., Durkin, K., Rittle-Johnson, B., Lynch, K., Newton, K., & Gogolen, C. (2015). Learning from comparison in algebra. Contemporary Educational Psychology, 40, 41–54. doi:10.1016/j.cedpsych.2014.05.005. Star, J. R., & Rittle-Johnson, B. (2009). It pays to compare: An experimental study on computational estimation. Journal of Experimental Child Psychology, 102, 408–426. doi:10.1016/j.jecp.2008.11.004. Star, J. R., Rittle-Johnson, B., & Durkin, K. (2016). Comparison and explanation of multiple strategies: One example of a small step forward for improving mathematics education. Policy Insights from the Behavioral and Brain Sciences. doi:10.1177/2372732216655543. Stein, M. K., Engle, R. A., Smith, M. S., & Hughes, E. K. (2008). Orchestrating productive mathematical discussions: five practices for helping teachers move beyond show and tell. Mathematical Thinking and Learning, 10(4), 313–340. doi:10.1080/10986060802229675. Stigler, J. W., & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. New York: Free Press. Treffers, A. (1991). Realistic mathematics education in the Netherlands 1980–1990. In L. Streefland (Ed.), Realistic mathematics education in primary school (pp. 11–20). Utrecht, Netherlands: Freudenthal Institute. Tyminski, A. M., Zambak, V. S., Drake, C., & Land, T. J. (2014). Using representations, decomposition, and approximations of practices to support prospective elementary mathematics teachers’ practice of organizing discussions. Journal of Mathematics Teacher Education, 17(5), 463–487. doi:10.1007/s10857-013-9261-4. VanderStoep, S. W., & Seifert, C. M. (1993). Learning “how” versus learning “when”: Improving transfer of problem-solving principles. Journal of the Learning Sciences, 3(1), 93–111. doi:10.1207/s15327809jls0301_3. Watson, A., & Mason, J. (2006). Seeing an exercise as a single mathematical object: Using variation to structure sense-making. Mathematical Thinking and Learning, 8(2), 91–111. Webb, N. M. (1991). Task-related verbal interaction and mathematics learning in small groups. Journal for Research in Mathematics Education, 22(5), 366–389. doi:10.2307/749186. Webb, N. M., Franke, M. L., Ing, M., Wong, J., Fernandez, C. H., Shin, N., & Turrou, A. C. (2014). Engaging with others’ mathematical ideas: Interrelationships among student participation, teachers’ instructional practices, and learning. International Journal of Educational Research, 63, 79–93. doi:10.1016/j.ijer.2013.02.001. Woodward, J., Beckmann, S., Driscoll, M., Franke, M. L., Herzig, P., Jitendra, A. K., … Ogbuehi, P. (2012). Improving mathematical problem solving in grades 4 through 8: A practice guide. Washington, D. C.: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U. S. Department of Education. Ziegler, E., & Stern, E. (2014). Delayed benefits of learning elementary algebraic transformations through contrasted comparisons. Learning and Instruction, 33, 131–146. doi:10.1016/j.learninstruc.2014.04.006. Ziegler, E., & Stern, E. (2016). Consistent advantages of contrasted comparisons: Algebra learning under direct instruction. Learning and Instruction, 41, 41–51. doi:10.1016/j.learninstruc.2015.09.006.