Metal ion homeostasis and intracellular parasitism

Molecular Microbiology - Tập 28 Số 3 - Trang 403-412 - 1998
Daniel Agranoff1, Sanjeev Krishna1
1Division of Infectious Diseases, Department of Cellular and Molecular Sciences, St George's Hospital Medical School, Cranmer Terrace, London, SW17 0RE, UK

Tóm tắt

Bacteria possess multiple mechanisms for the transport of metal ions. While many of these systems may have evolved in the first instance to resist the detrimental effects of toxic environmental heavy metals, they have since become adapted to a variety of important homeostatic functions. The ‘P’‐type ATPases playa key role in metal ion transport in bacteria. A Cu+‐ATPase from the intracellular bacterium Listeria monocytogenes is implicated in pathogenesis, and similar pumps in Mycobacterium tuberculosis and M. leprae may play a comparable role. Intracellular bacteria require transition metal cations for the synthesis of superoxide dismutases and catalases, which constitute an important line of defence against macrophage‐killing mechanisms. The macrophage protein Nramp1, which confers resistance to a variety of intracellular pathogens, has also been shown recently to be a divalent amphoteric cation transporter. Mycobacterial homologues have recently been identified by genomic analysis. These findings suggest a model in which competition for divalent cations plays a pivotal role in the interaction between host and parasite.

Từ khóa


Tài liệu tham khảo

10.1111/j.1749-6632.1992.tb43799.x

10.1093/ajcn/30.8.1236

10.1093/emboj/16.17.5376

10.1093/emboj/17.20.6061

Bull P.C., 1994, Wilson disease and Menkes disease: new handles on heavy metal transport, Trends Biochem Sci, 10, 246

10.1126/science.273.5278.1058

10.1093/nar/23.12.2105

10.1073/pnas.92.22.10089

10.1016/0168-9525(96)30042-5

10.1038/339476a0

Epstein W., 1992, kdp‐ a bacterial P‐type ATPase whose expression and activity are regulated by turgor pressure, Acta Physiol Scand, 607, 193

10.1021/bi960175e

10.1126/science.7542800

10.1007/s004380050347

10.1006/mpat.1996.0092

10.1126/science.270.5235.397

10.1111/j.1365-2958.1995.tb02317.x

10.1111/j.1574-6968.1996.tb08575.x

10.1111/j.1365-2958.1995.tb02224.x

10.1084/jem.185.4.717

10.1038/41343

Himmelreich R., 1996, Complete sequence analysis of the genome of the bacterium, Mycoplasma pneumoniae, 24, 4420

10.1128/jb.174.15.4878-4884.1992

10.1128/jb.171.2.929-939.1989

10.1016/0014-5793(93)80928-N

10.1093/dnares/3.3.109

10.1038/37052

10.1111/j.1365-2958.1995.tb02309.x

10.1128/jb.176.10.3040-3048.1994

10.1021/bi00048a001

10.1016/0304-4157(95)00017-8

10.1073/pnas.86.10.3544

Odermatt A., 1993, Primary structure of two P‐type ATPases involved in copper homeostasis in Enterococcus hirae, J Biol Chem, 268, 12775, 10.1016/S0021-9258(18)31455-8

10.1073/pnas.91.20.9651

10.1111/j.1365-2958.1992.tb02197.x

10.1080/07315724.1994.10718431

10.1016/S0962-8924(00)88963-1

10.1042/bj3040803

10.1146/annurev.micro.50.1.753

10.1111/j.1365-2958.1993.tb00898.x

10.1016/S0021-9258(17)35246-8

10.1074/jbc.270.16.9217

Supek F., 1997, Function of metal ion homeostasis in the cell division cycle, mitochondrial protein processing, sensitivity to mycobacterial infection and brain function, J Exp Biol, 200, 321, 10.1242/jeb.200.2.321

10.1126/science.272.5267.1495

10.1038/41483

10.1128/jb.179.14.4501-4512.1997

10.1128/jb.174.1.116-121.1992

10.1002/jlb.58.4.382

10.1128/AAC.29.4.663