A genotypically distinct, melanic variant of Anopheles arabiensi s in Sudan is associated with arid environments
Tóm tắt
Anopheles arabiensis, an important malaria vector in Sudan and other countries in sub-Saharan Africa, exhibits considerable ecological and behavioural plasticity allowing it to survive in the harsh conditions of arid regions. It has been shown that adult populations of An. arabiensis in the semi-desert habitat of western Khartoum State survive through the long dry season in a state of partial aestivation, characterized by limited feeding activity and a degree of arrested ovarian development. Anopheles arabiensis in these sites occurs in two phenotypic forms. One is large and heavily melanized, the other has the typical characteristics of An. arabiensis as found elsewhere in Africa. The extent of genetic variation in these forms was examined in widely separated locations in Sudan, including Kassala, Gedaref and the Northern States between 1998 and 1999 and 2004 and 2006. Each mosquito specimen was identified using standard morphological keys and a species-specific PCR test. Sequence variation in a 660 bp fragment of the mtDNA ND5 coding region was examined and the extent of genetic divergence between the forms was estimated from FST values using DNASP version 4.9. TCS 1.13 software was used to determine the genealogical relationships and to reflect clustering among mtDNA haplotypes. The melanic and normal forms were found in sympatry in Kassala, Gedaref and Khartoum states, with the melanic form commonest in the hottest and most arid areas. Both forms were encountered in the periods of study: 1998–1999, and 2004–2006. Only ten specimens of An. arabiensis were collected from the Northern State in February 2006, all of which were of the normal form. Based on the ND5 analysis, there was a marked subdivision between the normal and melanic forms (FST = 0.59). Furthermore, the melanic form showed more genetic variability, as measured by haplotype diversity (0.95) compared with the normal form (0.57), suggesting larger effective population. This is the first demonstration of correspondent phenotypic and genetic structuring in An. arabiensis. The high level of genetic differentiation shown by the mtDNA ND5 locus suggests that the two forms may represent separate species. It is hypothesized that the melanic form is better adapted to hot and arid environments.
Tài liệu tham khảo
Harbach RE: The classification of genus Anopheles (Diptera: Culicidae): aworking hypothesis of phylogenetic relationships. Bull Entomol Res. 2004, 94: 537-553.
Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Burkot TR, Harbach RE, Hay SI: A global map of dominant malaria vectors. Parasit Vectors. 2012, 5: 1-11. 10.1186/1756-3305-5-1.
Harbach RE: Mosquito Taxonomic Inventory. 2013, http://mosquito-taxonomic-inventory.info/. accessed on 11 August 2014
Davidson G: Anopheles gambiae: a complex of species. Bull World Health Organ. 1964, 31: 625-634.
Coetzee M, Hunt RH, Wilkerson R, Torre AD, Coullibaly M, Besansky NJ: Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa. 2013, 3: 246-274.
White GB: Anopheles bwambae sp. n., a malaria vector in the Semliki Valley, Uganda, and its relationship with other sibling species of the An. gambiae complex (Diptera: Culicidae). Syst Entomol. 1985, 10: 501-522. 10.1111/j.1365-3113.1985.tb00155.x.
Hunt RH, Coetzee M, Fettene M: The Anopheles gambiae complex: a new species from Ethiopia. Trans R SocTrop Med Hyg. 1998, 92: 231-235. 10.1016/S0035-9203(98)90761-1.
Coluzzi M, Sabatini A, Petrarca V, Di Deco MA: Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg. 1979, 73: 483-497. 10.1016/0035-9203(79)90036-1.
Service M: Anopheles gambiae: Africa's principal malaria vector. Bull Entomol Soc Am. 1985, 31: 8-12.
Fontenille D, Lochouarn L, Diatta M, Sokhna C, Dia I, Diagne N, Lemasson JJ, Ba K, Tall A, Rogier C, Trape JF: Four years' entomological study of the transmission of seasonal malaria in Senegal and the bionomics of Anopheles gambiae and Anopheles arabiensis. Trans R Soc Trop Med Hyg. 1997, 91: 647-652. 10.1016/S0035-9203(97)90506-X.
Coetzee M, Craig M, le Sueur D: Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitol Today. 2000, 16: 74-77. 10.1016/S0169-4758(99)01563-X.
Okello PE, Van Bortel W, Byaruhanga AM, Correwyn A, Roelants P, Talisuna A, D'Alessandro U, Coosemans M: Variation in malaria transmission intensity in seven sites throughout Uganda. Am J Trop Med Hyg. 2006, 75: 219-225.
Lindblade KA, Gimnig JE, Kamau L, Hawley WA, Odhiambo F, Olang G, Ter Kuile FO, Vulule JM, Slutsker L: Impact of sustained use of insecticide treated bed nets on malaria vector species distribution and culicine mosquitoes. J Med Entomol. 2006, 43: 428-432. 10.1603/0022-2585(2006)043[0428:IOSUOI]2.0.CO;2.
Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE, Vulule JM, Hawley WA, Hamel MJ, Walker ED: Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar J. 2010, 9: 62-10.1186/1475-2875-9-62.
White GB: Anopheles gambiae complex and disease transmission in Africa. Trans R Soc Trop Med Hyg. 1974, 68: 278-301. 10.1016/0035-9203(74)90035-2.
Service MW, Joshi GP, Radhan GD: A survey of Anopheles gambiae (species A) and An. arabiensis (species B) of the An. gambiae Giles complex in the Kisumu area of Kenya following insecticidal spraying with OMS-43 (Fenitrothion). Ann Trop Med Parasitol. 1978, 72: 377-386.
Mnzava AE, Mutinga MJ, Staak C: Host blood meals and chromosomal inversion polymorphism in Anopheles arabiensis in the Baringo District of Kenya. J Am Mosq Control Assoc. 1994, 10: 507-510.
Charlwood JD, Gassim M, Elnsur EI, Donnelly M, Petrarca V, Billingsley PF, Pinto J, Smith T: The impact of indoor residual spraying with Malathion on malaria in refugee camps in eastern Sudan. Acta Trop. 2001, 80: 1-8. 10.1016/S0001-706X(01)00152-8.
Kent RJ, Mharakurwa S, Norris DE: Spatial and temporal genetic structure of Anopheles arabiensis in Southern Zambia over consecutive wet and drought years. Am J Trop Med Hyg. 2007, 77: 316-323.
Besansky NJ, Lehmann T, Fahey GT, Fontenille D, Lawrence E, Braack O, Hawley WA, Collins FH: Patterns of mitochondrial variation within and between African malaria vectors, Anopheles gambiae and Anopheles arabiensis, suggest extensive gene flow. Genetics. 1997, 147: 1817-1828.
Toure YT, Petrarca V, Traore SF, Coulibaly A, Maiga HM, Sankare O, Sow M, Di Deco MA, Coluzzi M: The distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, West Africa. Parassitologia. 1998, 40: 477-511.
Donnelly MJ, Cuamba N, Charlwood JD, Collins FH, Townson H: Population structure in the malaria vector, Anopheles arabiensis Patton, in East Africa. Heredity. 1999, 83: 408-417. 10.1038/sj.hdy.6885930.
Kamau L, Mukabana WR, Hawley WA: Analysis of genetic variability in Anopheles arabiensis and Anopheles gambiae using microsatellite loci. Insect Mol Biol. 1999, 8: 287-297. 10.1046/j.1365-2583.1999.820287.x.
Petrarca V, Nugud AD, Elkarim AM, Haridi AM, Dideco AM, Coluzzi M: Cytogenetic of the Anopheles gambiae complex in Sudan, with special reference to An. arabiensis: relationships with East and West African populations. Med Vet Entomol. 2000, 14: 149-164. 10.1046/j.1365-2915.2000.00231.x.
Simard F, Fontenille D, Lehmann T, Girod R, Brutus L, Gopaul R, Dournon C, Collins FH: High amounts of genetic differentiation between populations of the malaria vector Anopheles arabiensis from West Africa and Eastern outer Islands. Am J Trop Med Hyg. 1999, 60: 1000-1009.
Simard F, Lehmann T, Lemasson JJ, Diatta M, Didier F: Persistence of Anopheles arabiensis during the severe dry season conditions in Senegal: an in direct approach using microsatellite loci. Insect Mol Biol. 2000, 9: 467-479. 10.1046/j.1365-2583.2000.00210.x.
Gentile G, della Torre A, Maegga B, Powell JR, Caccone A: Genetic differentiation in the African malaria Vector, Anopheles gambiae s.s., and the problem of taxonomic status. Genetics. 2002, 161: 1561-1578.
Donnelly MJ, Townson H: Evidence for extensive genetic differentiation among populations of the malaria vector Anopheles arabiensis in Eastern Africa. Insect Mol Biol. 2000, 9: 357-367. 10.1046/j.1365-2583.2000.00197.x.
Donnelly MJ, Monica CL, Lehmann T: Evidence for recent population expansion in the evolutionary history of the malaria vectors Anopheles arabiensis and Anopheles gambiae. Mol Biol Evol. 2001, 18: 1353-1364. 10.1093/oxfordjournals.molbev.a003919.
Onyabe DY, Conn JE: Population genetic structure of the malaria mosquito An. arabiensis across Nigeria suggests range expansion. Mol Ecol. 2001, 10: 2577-2591. 10.1046/j.0962-1083.2001.01387.x.
Nyanjom SR, Chen H, Gebre-Michael T, Bekele E, Shililu J, Githure J, Beier JC, Yan G: Population genetic structure of Anopheles arabiensis mosquitoes in Ethiopia and Eritrea. Heredity J. 2013, 94: 457-463.
Donnelly MJ, Pinto J, Girod R, Besansky NJ, Lehmann T: Revisiting the role of introgression vs shared ancestral polymorphisms as key processes shaping genetic diversity in the recently separated sibling species of the Anopheles gambiae complex. Heredity. 2004, 92: 61-68. 10.1038/sj.hdy.6800377.
Morlais I, Girod R, Hunt R, Simard F, Fontenille D: Population structure of Anopheles arabiensis on La Reunion Island, Indian Ocean. Am J Trop Med Hyg. 2005, 73: 1077-1082.
Temu EA, Yan G: Microsatellite and mitochondrial genetic differentiation of Anopheles arabiensis (Diptera: Culicidae) from western Kenya, the Great Rift Valley, and coastal Kenya. Am J Trop Med Hyg. 2005, 73: 726-733.
Tripet F, Dolo G, Lanzaro GC: Multilevel analyses of genetic differentiation in Anopheles gambiae s.s. reveal patterns of gene flow important for malaria-fighting mosquito projects. Genetics. 2005, 169: 313-324.
Lee Y, Seifert SN, Fornadel M, Norris DE, Lanzaro GC: Single-nucleotide polymorphisms for high-throughput genotyping of Anopheles arabiensis in East and Southern Africa. J Med Entomol. 2012, 49: 307-315. 10.1603/ME11113.
Abuelmaali SA, Elaagip AH, Basheer MA, Frah EA, Ahmed FT, Elhaj HF, Seidahmed OM, Weetman D, Mahdi Abdel Hamid M: Impacts of agricultural practices on insecticide resistance in the malaria vector Anopheles arabiensis in Khartoum State. Sudan PLoS One. 2013, 8: e80549-10.1371/journal.pone.0080549.
Musa MI, Shohaimi S, Hashim NR, Krishnarajah I: A climate distribution model of malaria transmission in Sudan. Geospat Health. 2012, 7: 27-36.
Noor AM, ElMardi KA, Abdelgader TM, Patil AP, Amine AA, Bakhiet S, Mukhtar MM, Snow RW: Malaria Risk Mapping for Control in the Republic of Sudan. Am J Trop Med Hyg. 2012, 87: 1012-1021. 10.4269/ajtmh.2012.12-0390.
Omer SM, Cloudsley-Thompson JL: Dry season biology of Anopheles gambiae Giles in the Sudan. Nature. 1968, 217: 879-880.
Omer SM, Cloudsley-Thompson JL: Survival of female Anopheles gambiae Giles through a 9-month dry season in Sudan. Bull World Health Organ. 1970, 42: 319-330.
Lehmann T, Dao A, Yaro AS, Adamou A, Kassogué Y, Diallo M, Sékou T, Coscaron-Arias C: Aestivation of the African malaria mosquito, Anopheles gambiae in the Sahel. Am J Trop Med Hyg. 2010, 83: 601-606. 10.4269/ajtmh.2010.09-0779.
Adamou A, Dao A, Timbine S, Kassogué Y, Yaro AS, Diallo M, Traoré SF, Huestis DL, Lehmann T: The contribution of aestivating mosquitoes to the persistence of Anopheles gambiae in the Sahel. Malar J. 2011, 10: 151-10.1186/1475-2875-10-151.
Yaro AS, Traoré AI, Huestis DL, Adamou A, Timbiné S, Kassogué Y, Diallo M, Dao A, Traoré SF, Lehmann T: Dry season reproductive depression of Anopheles gambiae in the Sahel. J Insect Physiol. 2012, 58: 1050-1059. 10.1016/j.jinsphys.2012.04.002.
Huestis DL, Yaro AS, Traoré AI, Dieter KL, Nwagbara JI, Bowie AC, Adamou A, Kassogué Y, Diallo M, Timbiné S, Dao A, Lehmann T: Seasonal variation in metabolic rate, flight activity and body size of Anopheles gambiae in the Sahel. J Exp Biol. 2013, 215: 2013-2021.
Lehmann T, Dao A, Yaro AS, Diallo M, Timbiné S, Huestis DL, Adamou A, Kassogué Y, Traoré AI: Seasonal variation in spatial distributions of Anopheles gambiae in a Sahelian village: evidence for aestivation. J Med Entomol. 2014, 51: 27-38. 10.1603/ME13094.
Gillies MT, De Meillon B: The Anophelinae of Africa south of the Sahara (Ethiopian Zoogeographical Region). Publications of The South African Institute for Medical Research, no.54. 1968, Johannesburg: South African Institute for Medical Research, 2
Gillies MT, Cotezee M: A supplement to the Anophelinae of Africa South of the Sahara. Publications of The South African Institute for Medical Research, no.55. 1987, Johannesburg: (Afrotropical Region). South African Institute for Medical Research
Scott JA, Brogdon WG, Collins FH: Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993, 49: 520-529.
Ballinger-Crabtree ME, Black WCV, Miller BR: Use of genetic polymorphism detected by the Random-Amplified Polymorphic DNA Polymerase Chain Reaction (RAPD-PCR) for differentiation and identification of Aedes aegypti subspecies and populations. Am J of Trop Med Hyg. 1992, 47: 893-901.
Beard CB, Hamm DM, Collins FH: The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects. Insect Mol Biol. 1993, 2: 103-124. 10.1111/j.1365-2583.1993.tb00131.x.
Rozas J, Rozas R: DnaSP version 3.5: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999, 15: 174-175. 10.1093/bioinformatics/15.2.174.
Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989, 123: 585-595.
Fu YX, Li WH: Statistical tests of neutrality of mutations. Genetics. 1993, 143: 1313-1320.
Clement M, Posada D, Crandall KA: TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000, 9: 1657-1659. 10.1046/j.1365-294x.2000.01020.x.
Templeton AR, Crandall KA, Sing CF: A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 1992, 132: 619-633.
Crandall KA, Templeton AR: Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics. 1993, 134: 959-969.
Lehmann T, Hawley WA, Grebert H, Collins FH: The effective population size of Anopheles gambiae in Kenya: implications for population structure. Mol Biol Evol. 1998, 15: 264-276. 10.1093/oxfordjournals.molbev.a025923.
Hoffman AA: Acclimation for desiccation resistance in drosophila melanogaster and the association between acclimation responses and genetic variation. J Insect Physiol. 1990, 36: 885-891. 10.1016/0022-1910(90)90176-G.
True JR: Insect melanism: the molecules matter. Trends Ecol Evol. 2003, 18: 640-647. 10.1016/j.tree.2003.09.006.
Ramniwas S, Kajla B, Dev K, Parkash R: Direct and correlated responses to laboratory selection for body melanisation in Drosophila melanogaster: support for the melanisation–desiccation resistance hypothesis. J Exp Biol. 2013, 216: 1244-1254. 10.1242/jeb.076166.
Aggarwal DD, Ranga P, Kalra B, Parkash R, Rashkovetsky E, Bantis LE: Rapid effects of humidity acclimation on stress resistance in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol. 2013, 166: 81-90. 10.1016/j.cbpa.2013.05.012.
Parkash R, Kalra B, Sharma V: Changes in cuticular lipids, water loss and desiccation resistance in a tropical drosophilid: analysis of variation between and within populations. Fly. 2008, 2: 189-197. 10.4161/fly.6619.
Donnelly MJ, Simard F, Lehman T: Evolutionary studies of malaria vectors. Trends Parasitol. 2002, 18: 75-80. 10.1016/S1471-4922(01)02198-5.