Past, present, and future of gifted science education in Korea: a historical perspective
Tóm tắt
The Republic of Korea is well known as a leader of gifted science education due to the significant progress it has made in the past two decades. This paper aims to provide a historical perspective of gifted science education in Korea by interviewing a key figure in the Korean science education community. This paper explores the various trajectories of the development of gifted science education via the experience and thoughts of Choe Seung-Urn, who is a founder and developer of gifted science education in Korea. He has participated in gifted science education in Korea since the beginning by building prototypes of gifted education institutes, introducing tools to identify gifted students, and developing an orchestrated and integrated model across both research and education. This conversation with a senior researcher on the brink of retirement is intended to provide a deeper insight for successive generations who will take over the gifted science education system.
Tài liệu tham khảo
Bak, S. (2017, July 24). South Korean teens swept math, physics Olympiads. The Korea herald. Retrieved from http://www.koreaherald.com/view.php?ud=20170724000626
Choe, S. U. (2012). Understanding of astrophysics using excel (엑셀을 이용한 천체물리학의 이해). Seoul: Bookshill.
Choe, S. U., & Chun, M. R. (2004). Considering criteria to make test questions of scientific creative problem solving for science gifted education. The SNU Journal of Education Research, 13, 27–48.
Choe, S. U., & Jung, H. C. (2003). Astronomy electronic textbook for the gifted science school (과학영재학교 천문학 전자교재) Korea Gifted and Talented School of Science.
Choe, S. U., Kim, E. S., Chun, M., & Yu, H. W. (2012). A study about the perception of scientifically gifted students regarding a program for gifted, based on autonomous learner model (자율학습자 모형에 기반한 영재교육 프로그램에 대한 과학영재 학생들의 인식 연구). Journal of Gifted/Talented Education, 22(3), 575–596.
Choe, S. U., & Lee, E. A. (2003). Development of the test instrument to assess students’ progress in understanding nature of science: Based on AAAS Benchmarks for Science Literacy. Journal of the Korean Earth Science Society, 24(2), 93–99.
Choe, S. U., & Woo, H. G. (2009). Understanding of science with mathematics and computer (수학과 컴퓨터를 이용한 과학이해하기). Seoul: Cheongbum Publishing Company.
Choe, S. U., Yang, S. G., Park, S., & Ga, S. H. (2018). Astronomical activity with modeling learning: Orbital motion of the solar system (모델링 학습과 함께하는 천문 활동: 태양계 천체의 궤도 운동). Seoul: Education Science Publishing.
Chun, M. R., & Choe, S. U. (2005). Development and implementation of “inventories of evaluating science gifted education program”-centering around SNU gifted science education program. The SNU Journal of Education Research, 14, 77–107.
Chun, M. R., Shin, Y. J., Lee, S. M., & Choe, S. U. (2008). Perception of the scientifically gifted and long-term effects of science gifted education program - from the students’ perspectives. Journal of the Korean Association for Science Education, 28(3), 241–252.
Council of National Association of Science Gifted Education Centers in the Universities of Korea. (2005). Policy study on the further development of the National Association of science gifted education centers in the universities. Daejeon: Korea Science and Engineering Foundation.
Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.
Gifted Education Database. (2019). Basic trends of gifted education Retrieved from https://ged.kedi.re.kr/stss/main.do.
Gwanak-gu Gifted Education Center holds a teacher workshop about teacher observation. (2009, April 6) The Asia Business Daily. Retrieved from http://www.asiae.co.kr/news/view.htm?idxno=2009040609443591642
Im, I. S., Sung, H., Kim, Y. J., & Choe, S. U. (2011). A follow-up study on the participants of international astronomy Olympiad competitions (천문올림피아드 국제대회 참가자에 대한 추적 연구). Publications of the Korean Astronomical Society, 26(3), 102–114.
Jung, H. C., Han, K. S., Kim, B. N., & Choe, S. U. (2002). Development of programs to enhance the scientific creativity: Based on theory and examples (과학 창의성 계발을 위한 프로그램 개발: 이론과 예시를 중심으로). Journal of the Korean Earth Science Society, 23(4), 334–348.
Kim, M. (2015, March 24). Students enter schools outside: Gwanak-gu closes the gifted education center. Hankyoreh. Retrieved from http://www.hani.co.kr/arti/society/society_general/683662.html
Korean Ministry of Education. (2003). The primary plan of the promotion of education for the gifted and talented law. Seoul: Korean Ministry of Education http://gifted.kedi.re.kr/khome/gifted/gedEng/history.do.
Korean Ministry of Science and ICT (2017). Korean team ranks 5th at 28th international biology Olympiad (IBO) Retrieved from https://english.msit.go.kr/english/msipContents/contentsView.do?cateId=msse42&artId=1360322.
Lee, E. A. (2001). Development of a pool for test items to assess student progress in an understanding of the nature of science: Based on AAAS Benchmarks for Science Literacy (Unpublished doctoral dissertation). Seoul National University, Seoul, Republic of Korea.
Lee, H. (2015, December 14). Korea places third at international junior science Olympiad. Korea.net. Retrieved from http://www.korea.net/NewsFocus/Sci-Tech/view?articleId=131333
Lee, S. H., & Choi, S. I. (2015). Comprehensive review of research publications on gifted education in Korea: 2003-2012 (한국 영재교육 연구의 현황 및 성과: 2003-2012). Journal of Gifted/Talented Education, 25(6), 881–904.
Marica, I. (2014, July 24). Watching the skies: International astronomy Olympiad takes place in Romanian city this summer. Romania-insider.com. Retrieved from https://www.romania-insider.com/watching-the-skies-international-astronomy-olympiad-takes-place-in-romanian-city-this-summer
Martin, M. O., Mullis, I. V. S., Foy, P., & Hooper, M. (2016). TIMSS 2015 international results in science. TIMSS & PIRLS International Study Center, Boston College, Boston, MA, USA.
Martin, M. O., Mullis, I. V. S., & Foy, R. (in collaboration with Olson, J. E., Erberber, E., & Galia, J.)(2008). TIMSS 2007 international science report: Findings from IEA’s trends in international mathematics and science study at the fourth and eighth grades. Chestnut Hill: TIMSS & PIRIL International Study Center.
Organization for Economic Cooperation and Development [OECD]. (2014). PISA 2012 results: What students know and can do (volume I, revised edition, February 2014): Student performance in mathematics, reading and science. Paris: OECD Publishing. https://doi.org/10.1787/9789264208780-en.
Organization for Economic Cooperation and Development [OECD]. (2016). PISA 2015 results in focus, PISA in focus, no. 67. Paris: OECD Publishing. https://doi.org/10.1787/aa9237e6-en.
Renzulli, J. S. (2005). The three ring conception of giftedness: A developmental model for promoting creative productivity. In R. J. Sternberg & J. E. Davidson (Eds.), Conceptions of giftedness (2nd ed., pp. 246–280). New York: Cambridge University Press.
Spearman, C. (1904). “General intelligence”, objectively determined and measured. American Journal of Psychology, 15(2), 201–293.
Tannenbaum, A. J. (1986). Giftedness: A psychosocial approach. In R. J. Sternberg & J. E. Davidson (Eds.), Conceptions of giftedness (pp. 21–252). New York: Cambridge University Press.
Yi, S. (2017). Comparison of international mathematical Olympiad participation histories of Korea, China, and Japan (한국, 중국, 일본의 국제수학올림피아드 참가 역사 비교). Journal for History of Mathematics, 30(2), 121–133.