Efficient extraction of proteins from formalin-fixed paraffin-embedded tissues requires higher concentration of tris(hydroxymethyl)aminomethane
Tóm tắt
Numerous formaldehyde-fixed and paraffin-embedded clinical tissues have been created in the past decades and stored in pathological depositories at hospitals as well as in clinical laboratories worldwide. In addition to the archived tissues, formaldehyde-fixation is also mandatory for preparing proteomics samples from diseased patients or animal models in order to inactivate contagious agents. Protein extraction from formaldehyde-fixed tissues is hampered by the Schiff base formation between the amino groups of proteins and formaldehyde. Although achievement of the highest extraction efficiency of proteins from the formaldehyde-fixed tissues is essential for obtaining maximum proteomics information, no attention has been paid to the concentration dependence of tris(hydroxymethyl)aminomethane on the extraction efficacy. We suspected that the concentration of tris(hydroxymethyl)aminomethane affects the protein extraction efficiency because of its property as a primary amine that reverses the Schiff base formation between the primary amines of proteins and formaldehyde. Thus we pursued optimization of the component and protocol of protein extraction buffer to achieve better extraction efficiency of proteins from formaldehyde-fixed and paraffin-embedded tissues. In order to simulate protein extraction from diseased tissues we made formaldehyde-fixed and paraffin-embedded samples from mouse liver slices and investigated the protein extraction efficiency and speed by changing the concentration of the protein extraction buffer component tris(hydroxymethyl)aminomethane under various extraction conditions. We find, as expected, that tris(hydroxymethyl)aminomethane significantly affects the performance of protein extraction from the formaldehyde-fixed and paraffin-embedded samples both in the extraction yield and in the extraction speed. We recommend the concentration of tris(hydroxymethyl)aminomethane in protein extraction buffer to be higher than 300 mM when extraction is conducted for 90 min at 90°C to achieve the most efficient protein extraction in a shorter time. The information will be essential for performing the most efficient protein extraction from formaldehyde-fixed and paraffin-embedded tissue samples for proteomics analysis.
Tài liệu tham khảo
Matsumoto H, Komori N: Protein identification on two-dimensional gels archived nearly two decades ago by in-gel digestion and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Anal Biochem. 1999, 270: 176-179. 10.1006/abio.1999.4054
Nirmalan N, Banks R, Van Eyk JE: Proteomics analysis of formalin fixed tissues. Proteomics Clin Appl. 2013, 7: 215-216.
Sutherland BW, Toews J, Kast J: Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein interactions. J Mass Spectrom. 2008, 43: 699-715. 10.1002/jms.1415
Stearns-Kurosawa DJ, Lupu F, Taylor FB, Kinasewitz G, Kurosawa S: Sepsis and pathophysiology of anthrax in a nonhuman primate model. Am J Pathol. 2006, 169: 433-444. 10.2353/ajpath.2006.051330
Fausther-Bovendo H, Mulangu S, Sullivan NJ: Ebolavirus vaccines for humans and apes. Curr Opin Virol. 2012, 2: 324-329. 10.1016/j.coviro.2012.04.003
Shi SR, Taylor CR, Fowler CB, Mason JT: Complete solubilization of formalin-fixed, paraffin-embedded tissue may improve proteomic studies. Proteomics Clin Appl. 2013, 7: 264-272. 10.1002/prca.201200031
Ikeda K, Monden T, Kanoh T, Tsujie M, Izawa H, Haba A, Ohnishi T, Sekimoto M, Tomita N, Shiozaki H, Monden M: Extraction and analysis of diagnostically useful proteins from formalin-fixed, paraffin-embedded tissue sections. J Histochem Cytochem. 1998, 46: 397-403. 10.1177/002215549804600314
Addis MF, Tanca A, Pagnozzi D, Rocca S, Uzzau S: 2-D PAGE and MS analysis of proteins from formalin-fixed, paraffin-embedded tissues. Proteomics. 2009, 9: 4329-4339. 10.1002/pmic.200900010
Tanca A, Pagnozzi D, Falchi G, Tonelli R, Rocca S, Roggio T, Uzzau S, Addis MF: Application of 2-D DIGE to formalin-fixed, paraffin-embedded tissues. Proteomics. 2011, 11: 1005-1011. 10.1002/pmic.201000353
Tanca A, Pagnozzi D, Falchi G, Biosa G, Rocca S, Foddai G, Uzzau S, Addis MF: Impact of fixation time on GeLC-MS/MS proteomic profiling of formalin-fixed, paraffin-embedded tissues. J Proteomics. 2011, 74: 1015-1021. 10.1016/j.jprot.2011.03.015
Addis MF, Tanca A, Pagnozzi D, Crobu S, Fanciulli G, Cossu-Rocca P, Uzzau S: Generation of high-quality protein extracts from formalin-fixed, paraffin-embedded tissues. Proteomics. 2009, 9: 3815-3823. 10.1002/pmic.200800971
Chung JY, Lee SJ, Kris Y, Braunschweig T, Traicoff JL, Hewitt SM: A well-based reverse-phase protein array applicable to extracts from formalin-fixed paraffin-embedded tissue. Proteomics Clin Appl. 2008, 2: 1539-1547. 10.1002/prca.200800005
Rodriguez-Rigueiro T, Valladares-Ayerbes M, Haz-Conde M, Blanco M, Aparicio G, Fernandez-Puente P, Blanco FJ, Lorenzo MJ, Aparicio LA, Figueroa A: A novel procedure for protein extraction from formalin-fixed paraffin-embedded tissues. Proteomics. 2011, 11: 2555-2559. 10.1002/pmic.201000809
Shi SR, Liu C, Balgley BM, Lee C, Taylor CR: Protein extraction from formalin-fixed, paraffin-embedded tissue sections: quality evaluation by mass spectrometry. J Histochem Cytochem. 2006, 54: 739-743. 10.1369/jhc.5B6851.2006
Azimzadeh O, Barjaktarovic Z, Aubele M, Calzada-Wack J, Sarioglu H, Atkinson MJ, Tapio S: Formalin-fixed paraffin-embedded (FFPE) proteome analysis using gel-free and gel-based proteomics. J Proteome Res. 2010, 9: 4710-4720. 10.1021/pr1004168
Magdeldin S, Yamamoto T: Toward deciphering proteomes of formalin-fixed paraffin-embedded (FFPE) tissues. Proteomics. 2012, 12: 1045-1058. 10.1002/pmic.201100550
Tanca A, Pagnozzi D, Addis MF: Setting proteins free: progresses and achievements in proteomics of formalin-fixed, paraffin-embedded tissues. Proteomics Clin Appl. 2012, 6: 7-21. 10.1002/prca.201100044
Wisniewski JR, Dus K, Mann M: Proteomic workflow for analysis of archival formalin-fixed and paraffin-embedded clinical samples to a depth of 10 000 proteins. Proteomics Clin Appl. 2013, 7: 225-233. 10.1002/prca.201200046
Craven RA, Cairns DA, Zougman A, Harnden P, Selby PJ, Banks RE: Proteomic analysis of formalin-fixed paraffin-embedded renal tissue samples by label-free MS: assessment of overall technical variability and the impact of block age. Proteomics Clin Appl. 2013, 7: 273-282. 10.1002/prca.201200065