Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults
Tóm tắt
Tài liệu tham khảo
Maude, 2014, Chimeric antigen receptor T cells for sustained remissions in leukemia, N Engl J Med, 371, 1507, 10.1056/NEJMoa1407222
Lee, 2015, T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial, Lancet, 385, 517, 10.1016/S0140-6736(14)61403-3
Turtle, 2016, CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients, J Clin Invest, 126, 2123, 10.1172/JCI85309
Turtle, 2016, Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells, Sci Transl Med, 8, 355ra116, 10.1126/scitranslmed.aaf8621
Porter, 2015, Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia, Sci Transl Med, 7, 303ra139, 10.1126/scitranslmed.aac5415
Brentjens, 2013, CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia, Sci Transl Med, 5, 177ra38, 10.1126/scitranslmed.3005930
Davila, 2014, Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia, Sci Transl Med, 6, 224ra25, 10.1126/scitranslmed.3008226
Singh, 2016, Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies, Sci Transl Med, 8, 320ra3, 10.1126/scitranslmed.aad5222
Kawalekar, 2016, Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells [published correction appears in Immunity. 2016;44(3):712], Immunity, 44, 380, 10.1016/j.immuni.2016.01.021
Sommermeyer, 2016, Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo, Leukemia, 30, 492, 10.1038/leu.2015.247
Hudecek, 2015, The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity, Cancer Immunol Res, 3, 125, 10.1158/2326-6066.CIR-14-0127
Wang, 2011, A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells, Blood, 118, 1255, 10.1182/blood-2011-02-337360
Gattinoni, 2011, A human memory T cell subset with stem cell-like properties, Nat Med, 17, 1290, 10.1038/nm.2446
Yang, 2013, Modulating the differentiation status of ex vivo-cultured anti-tumor T cells using cytokine cocktails, Cancer Immunol Immunother, 62, 727, 10.1007/s00262-012-1378-2
Gardner, 2016, Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy, Blood, 127, 2406, 10.1182/blood-2015-08-665547
Kochenderfer, 2012, B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells, Blood, 119, 2709, 10.1182/blood-2011-10-384388
Savoldo, 2011, CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients, J Clin Invest, 121, 1822, 10.1172/JCI46110
Sotillo, 2015, Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy, Cancer Discov, 5, 1282, 10.1158/2159-8290.CD-15-1020
Haso, 2013, Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia, Blood, 121, 1165, 10.1182/blood-2012-06-438002