Intronic Non-CG DNA hydroxymethylation and alternative mRNA splicing in honey bees

Springer Science and Business Media LLC - Tập 14 - Trang 1-15 - 2013
Pablo Cingolani1,2, Xiaoyi Cao3, Radhika S Khetani3, Chieh-Chun Chen3, Melissa Coon1, Alya’a Sammak1, Aliccia Bollig-Fischer4, Susan Land1, Yun Huang5, Matthew E Hudson3,6, Mark D Garfinkel7, Sheng Zhong3, Gene E Robinson3,8,9, Douglas M Ruden1,10
1Department of Obstetrics and Gynecology, Wayne State University, Detroit, USA
2School of Computer Science & Genome Quebec Innovation Centre, McGill University, Montreal, Canada
3Institute for Genomic Biology, University of Illinois, Urbana, USA
4Department of Oncology, Wayne State University, Detroit, USA
5La Jolla Institute for Allergy & Immunology, La Jolla, USA
6Department of Crop Sciences, University of Illinois, Urbana, USA
7Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, USA
8Department of Entomology, University of Illinois, Urbana, USA
9Neuroscience Program, University of Illinois, Urbana, USA
10Institute of Environmental Health Sciences, Wayne State University, Detroit, USA

Tóm tắt

Previous whole-genome shotgun bisulfite sequencing experiments showed that DNA cytosine methylation in the honey bee (Apis mellifera) is almost exclusively at CG dinucleotides in exons. However, the most commonly used method, bisulfite sequencing, cannot distinguish 5-methylcytosine from 5-hydroxymethylcytosine, an oxidized form of 5-methylcytosine that is catalyzed by the TET family of dioxygenases. Furthermore, some analysis software programs under-represent non-CG DNA methylation and hydryoxymethylation for a variety of reasons. Therefore, we used an unbiased analysis of bisulfite sequencing data combined with molecular and bioinformatics approaches to distinguish 5-methylcytosine from 5-hydroxymethylcytosine. By doing this, we have performed the first whole genome analyses of DNA modifications at non-CG sites in honey bees and correlated the effects of these DNA modifications on gene expression and alternative mRNA splicing. We confirmed, using unbiased analyses of whole-genome shotgun bisulfite sequencing (BS-seq) data, with both new data and published data, the previous finding that CG DNA methylation is enriched in exons in honey bees. However, we also found evidence that cytosine methylation and hydroxymethylation at non-CG sites is enriched in introns. Using antibodies against 5-hydroxmethylcytosine, we confirmed that DNA hydroxymethylation at non-CG sites is enriched in introns. Additionally, using a new technique, Pvu-seq (which employs the enzyme PvuRts1l to digest DNA at 5-hydroxymethylcytosine sites followed by next-generation DNA sequencing), we further confirmed that hydroxymethylation is enriched in introns at non-CG sites. Cytosine hydroxymethylation at non-CG sites might have more functional significance than previously appreciated, and in honey bees these modifications might be related to the regulation of alternative mRNA splicing by defining the locations of the introns.

Tài liệu tham khảo

Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM: Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009, 462 (7271): 315-322. 10.1038/nature08514. Chen PY, Feng S, Joo JW, Jacobsen SE, Pellegrini M: A comparative analysis of DNA methylation across human embryonic stem cell lines. Genome Biol. 2011, 12 (7): R62-10.1186/gb-2011-12-7-r62. Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S: CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011, 479 (7371): 74-79. 10.1038/nature10442. Li-Byarlay H, Li Y, Stroud H, Feng SH, Newman TC, Kaneda M, Hou KK, Worley KC, Elsik CG, Wickline SA: RNA interference knockdown of DNA methyltransferase 3 affects gene alternative splicing in the honey bee. Proc Natl Acad Sci USA. 2013, 110 (31): 12750-12755. 10.1073/pnas.1310735110. Wang Y, Jorda M, Jones PL, Maleszka R, Ling X, Robertson HM, Mizzen CA, Peinado MA, Robinson GE: Functional CpG methylation system in a social insect. Science. 2006, 314 (5799): 645-647. 10.1126/science.1135213. Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R: The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol. 2010, 8 (11): e1000506-10.1371/journal.pbio.1000506. Lyko F, Maleszka R: Insects as innovative models for functional studies of DNA methylation. Trends Genet. 2011, 27 (4): 127-131. 10.1016/j.tig.2011.01.003. Zemach A, McDaniel IE, Silva P, Zilberman D: Genome-Wide Evolutionary Analysis of Eukaryotic DNA Methylation. Science. 2010, 328 (5980): 916-919. 10.1126/science.1186366. Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME: Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA. 2010, 107 (19): 8689-8694. 10.1073/pnas.1002720107. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009, 324 (5929): 930-935. 10.1126/science.1170116. Kriaucionis S, Heintz N: The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009, 324 (5929): 929-930. 10.1126/science.1169786. Iyer LM, Tahiliani M, Rao A, Aravind L: Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle. 2009, 8 (11): 1698-1710. 10.4161/cc.8.11.8580. Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, McLoughlin EM, Brudno Y, Mahapatra S, Kapranov P: Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature. 2011, 473 (7347): 394-397. 10.1038/nature10102. Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, Balasubramanian S: Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science. 2012, 336 (6083): 934-937. 10.1126/science.1220671. Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, Li X, Dai Q, Shen Y, Park B: Base-resolution analysis of 5-hydroxymethylcytosine in the Mammalian genome. Cell. 2012, 149 (6): 1368-1380. 10.1016/j.cell.2012.04.027. Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W: Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature. 2011, 473 (7347): 398-402. 10.1038/nature10008. Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, Rappsilber J, Helin K: TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature. 2011, 473 (7347): 343-348. 10.1038/nature10066. Wu H, D'Alessio AC, Ito S, Wang Z, Cui K, Zhao K, Sun YE, Zhang Y: Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev. 2011, 25 (7): 679-684. 10.1101/gad.2036011. Hong SH, Rampalli S, Lee JB, McNicol J, Collins T, Draper JS, Bhatia M: Cell fate potential of human pluripotent stem cells is encoded by histone modifications. Cell stem cell. 2011, 9 (1): 24-36. 10.1016/j.stem.2011.06.002. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I: Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001, 125 (1–2): 279-284. Krueger F, Andrews SR: Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011, 27 (11): 1571-1572. 10.1093/bioinformatics/btr167. Chen PY, Cokus SJ, Pellegrini M: BS Seeker: precise mapping for bisulfite sequencing. BMC Bioinforma. 2010, 11: 203-10.1186/1471-2105-11-203. Xi Y, Li W: BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinforma. 2009, 10: 232-10.1186/1471-2105-10-232. Wang H, Guan S, Quimby A, Cohen-Karni D, Pradhan S, Wilson G, Roberts RJ, Zhu Z, Zheng Y: Comparative characterization of the PvuRts1I family of restriction enzymes and their application in mapping genomic 5-hydroxymethylcytosine. Nucleic Acids Res. 2011, 39 (21): 9294-9305. 10.1093/nar/gkr607. Szwagierczak A, Brachmann A, Schmidt CS, Bultmann S, Leonhardt H, Spada F: Characterization of PvuRts1I endonuclease as a tool to investigate genomic 5-hydroxymethylcytosine. Nucleic Acids Res. 2011, 39 (12): 5149-5156. 10.1093/nar/gkr118. Janosi L, Yonemitsu H, Hong H, Kaji A: Molecular cloning and expression of a novel hydroxymethylcytosine-specific restriction enzyme (PvuRts1I) modulated by glucosylation of DNA. J Mol Biol. 1994, 242 (1): 45-61. 10.1006/jmbi.1994.1556. Kucharski R, Maleszka J, Foret S, Maleszka R: Nutritional control of reproductive status in honeybees via DNA methylation. Science. 2008, 319 (5871): 1827-1830. 10.1126/science.1153069. Wang Y, Leung FC: In silico prediction of two classes of honeybee genes with CpG deficiency or CpG enrichment and sorting according to gene ontology classes. J Mol Evol. 2009, 68 (6): 700-705. 10.1007/s00239-009-9244-3. Elango N, Hunt BG, Goodisman MA, Yi SV: DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proc Natl Acad Sci USA. 2009, 106 (27): 11206-11211. 10.1073/pnas.0900301106. Pradhan S, Bacolla A, Wells RD, Roberts RJ: Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem. 1999, 274 (46): 33002-33010. 10.1074/jbc.274.46.33002. Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R: Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA. 2000, 97 (10): 5237-5242. 10.1073/pnas.97.10.5237. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003, 4 (5): 3-10.1186/gb-2003-4-5-p3. Carmon A, Topbas F, Baron M, MacIntyre RJ: dumpy interacts with a large number of genes in the developing wing of Drosophila melanogaster. Fly. 2010, 4 (2): 117-127. 10.4161/fly.4.2.11953. Donaldson ZR, Young LJ: Oxytocin, vasopressin, and the neurogenetics of sociality. Science. 2008, 322 (5903): 900-904. 10.1126/science.1158668. Szyf M, Weaver I, Meaney M: Maternal care, the epigenome and phenotypic differences in behavior. Reprod Toxicol. 2007, 24 (1): 9-19. 10.1016/j.reprotox.2007.05.001. Weaver IC, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ: Epigenetic programming by maternal behavior [see comment]. Nat Neurosci. 2004, 7 (8): 847-854. 10.1038/nn1276. Vitaro F, Brendgen M, Boivin M, Cantin S, Dionne G, Tremblay RE, Girard A, Perusse D: A monozygotic twin difference study of friends' aggression and children's adjustment problems. Child Dev. 2011, 82 (2): 617-632. 10.1111/j.1467-8624.2010.01570.x. Tremblay RE: Developmental origins of disruptive behaviour problems: the 'original sin' hypothesis, epigenetics and their consequences for prevention. J Child Psychol Psychiatry. 2010, 51 (4): 341-367. 10.1111/j.1469-7610.2010.02211.x. Alaux C, Sinha S, Hasadsri L, Hunt GJ, Guzman-Novoa E, DeGrandi-Hoffman G, Uribe-Rubio JL, Southey BR, Rodriguez-Zas S, Robinson GE: Honey bee aggression supports a link between gene regulation and behavioral evolution. Proc Natl Acad Sci USA. 2009, 106 (36): 15400-15405. 10.1073/pnas.0907043106. Schor IE, Rascovan N, Pelisch F, Allo M, Kornblihtt AR: Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc Natl Acad Sci USA. 2009, 106 (11): 4325-4330. 10.1073/pnas.0810666106. Sims RJ, Millhouse S, Chen CF, Lewis BA, Erdjument-Bromage H, Tempst P, Manley JL, Reinberg D: Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell. 2007, 28 (4): 665-676. 10.1016/j.molcel.2007.11.010. Kolasinska-Zwierz P, Down T, Latorre I, Liu T, Liu XS, Ahringer J: Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet. 2009, 41 (3): 376-381. 10.1038/ng.322. Allo M, Buggiano V, Fededa JP, Petrillo E, Schor I, de la Mata M, Agirre E, Plass M, Eyras E, Elela SA: Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat Struct Mol Biol. 2009, 16 (7): 717-724. 10.1038/nsmb.1620. Saint-Andre V, Batsche E, Rachez C, Muchardt C: Histone H3 lysine 9 trimethylation and HP1gamma favor inclusion of alternative exons. Nat Struct Mol Biol. 2011, 18 (3): 337-344. 10.1038/nsmb.1995. Merkin J, Russell C, Chen P, Burge CB: Evolutionary dynamics of gene and isoform regulation in Mammalian tissues. Science. 2012, 338 (6114): 1593-1599. 10.1126/science.1228186. Pomraning KR, Smith KM, Freitag M: Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods. 2009, 47 (3): 142-150. 10.1016/j.ymeth.2008.09.022. Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009, 25 (14): 1754-1760. 10.1093/bioinformatics/btp324. Li H, Durbin R: Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010, 26 (5): 589-595. 10.1093/bioinformatics/btp698. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10 (3): 25-10.1186/gb-2009-10-3-r25. Bowtie is open source http://bowtie.cbcb.umd.edu Burrows M, Jerian C, Lampson B, Mann T: Online Data-Compression in a Log-Structured File System. Sigplan Notices. 1992, 27 (9): 2-9. 10.1145/143371.143376. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The sequence alignment/map format and SAMtools. Bioinformatics. 2009, 25 (16): 2078-10.1093/bioinformatics/btp352. Chen PY, Cokus SJ, Pellegrini M: BS Seeker: precise mapping for bisulfite sequencing. MC Bioinform. 2010, 11: 203- Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 2008, 18 (11): 1851-1858. 10.1101/gr.078212.108. Dessau RB, Pipper CB: ''R"--project for statistical computing. Ugeskr Laeger. 2008, 170 (5): 328-330. Krueger F, Kreck B, Franke A, Andrews SR: DNA methylome analysis using short bisulfite sequencing data. Nat Methods. 2012, 9 (2): 145-151. 10.1038/nmeth.1828. Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B: RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res. 2012, 40: W622-627. 10.1093/nar/gks540. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W: Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008, 9 (9): R137-10.1186/gb-2008-9-9-r137. Berglund AC, Sjölund E, Östlund G, Sonnhammer ELL: InParanoid 6: eukaryotic ortholog clusters with inparalogs. Nucleic Acids Res. 2008, 36 (suppl 1): D263- O'Brien KP, Remm M, Sonnhammer ELL: Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res. 2005, 33 (suppl 1): D476- Foret S, Kucharski R, Pittelkow Y, Lockett GA, Maleszka R: Epigenetic regulation of the honey bee transcriptome: unravelling the nature of methylated genes. BMC Genomics. 2009, 10: 472-10.1186/1471-2164-10-472.