Dynamic graph generation for the shortest path problem in time expanded networks
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahuja, R.K., Orlin, J.B., Pallottino, S., Scutellà, M.G.: Dynamic shortest paths minimizing travel times and costs. Networks 41, 205 (2003)
Borndörfer, R., Schlechte, T.: Models for railway track allocation. In: Liebchen, C., Ahuja, R.K., Mesa, J.A. (eds.) ATMOS 2007. Dagstuhl, Germany, IBFI, Schloss Dagstuhl, Germany (2007)
Cacchiani, V., Caprara, A., Toth, P.: A column generation approach to train timetabling on a corridor. 4OR Q. J. Oper. Res. 6(2), 125–142 (2008)
Cacchiani, V., Caprara, A., Toth, P.: Scheduling extra freight trains on railway networks. Transp. Res. Part B Methodol. 44(2), 215–231 (2010)
Cacchiani, V., Toth, P.: Nominal and robust train timetabling problems. Eur. J. Oper. Res. 219(3), 727–737 (2012)
Caprara, A., Fischetti, M., Toth, P.: Modeling and solving the train timetabling problem. Oper. Res. 50(5), 851–861 (2002)
Caprara, A., Monaci, M., Toth, P., Guida, P.L.: A lagrangian heuristic algorithm for a real-world train timetabling problem. Discret. Appl. Math. 154(5), 738–753 (2006)
Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Demetrescu, C. (ed.) Experimental Algorithms. Lecture Notes in Computer Science, vol. 4525, pp. 52–65. Springer, Berlin (2007)
Fischer, F., Helmberg, C.: Dynamic graph generation and dynamic rolling horizon techniques in large scale train timetabling. In: Erlebac, T., Lübbecke, M. (eds.) Proceedings of the 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems. OpenAccess Series in Informatics (OASIcs), vol. 14, pp. 45–60, Dagstuhl, Germany, Schloss Dagstuhl–Leibniz–Zentrum fuer Informatik (2010)
Fischer, F., Helmberg, C., Janßen, J., Krostitz, B.: Towards solving very large scale train timetabling problems by lagrangian relaxation. In: Fischetti, M., Widmayer, P. (eds.) ATMOS 2008—8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems. Dagstuhl, Germany, Schloss Dagstuhl–Leibniz–Zentrum fuer Informatik, Germany (2008)
Gawiejnowicz, S.: Time-Dependent Scheduling, 1st edn. Springer, Berlin (2008)
Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for $$A^*$$ : Shortest Path Algorithms with Preprocessing, pp. 93–139. American Mathematical Society (AMS), Providence (2009)
Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discret. Math. 4, 287–326 (1979)
Helmberg, C.: ConicBundle 0.3.11. Fakultät für Mathematik, Technische Universität Chemnitz, 2012. http://www.tu-chemnitz.de/~helmberg/ConicBundle
Helmberg, C., Röhl, S.: A case study of joint online truck scheduling and inventory management for multiple warehouses. Oper. Res. 55(4), 733–752 (2007)
Kamiyama, N., Katoh, N., Takizawa, A.: An efficient algorithm for the evacuation problem in a certain class of networks with uniform path-lengths. Discret. Appl. Math. 157(17), 3665–3677 (2009)
Klunder, G.A., Post, H.N.: The shortest path problem on large-scale real-road networks. Networks 48(4), 182–194 (2006)
Kotnyek, B.: An Annotated Overview of Dynamic Network Flows. Technical Report RR-4936, INRIA, (2003)
Lusby, R.M., Larsen, J., Ehrgott, M., Ryan, D.: Railway track allocation: models and methods. OR Spectr. 33(4), 843–883 (2011)
Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance estimation in large networks. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM ’09, pp. 867–876, ACM, New York (2009)
Skutella, M.: An introduction to network flows over time. In: Research Trends in Combinatorial Optimization, pp. 451–482. Springer (2009)
Yanagisawa, H.: Fast Shortest Path Computation for Solving the Multicommodity Flow Problem. Technical Report RT0688, IBM Tokyo Research Laboratory (2006)