Diluted magnetic semiconductors

Journal of Applied Physics - Tập 64 Số 4 - Trang R29-R64 - 1988
J. K. Furdyna1
1Department of Physics, University of Notre Dame, Notre Dame, Indiana, 46556

Tóm tắt

We review the physical properties of diluted magnetic semiconductors (DMS) of the type AII1−xMnxBVI (e.g., Cd1−xMnxSe, Hg1−xMnxTe). Crystallographic properties are discussed first, with emphasis on the common structural features which these materials have as a result of tetrahedral bonding. We then describe the band structure of the AII1−xMnxBVI alloys in the absence of an external magnetic field, stressing the close relationship of the sp electron bands in these materials to the band structure of the nonmagnetic AIIBVI ‘‘parent’’ semiconductors. In addition, the characteristics of the narrow (nearly localized) band arising from the half-filled Mn 3d5 shells are described, along with their profound effect on the optical properties of DMS. We then describe our present understanding of the magnetic properties of the AII1−xMnxBVI alloys. In particular, we discuss the mechanism of the Mn++-Mn++ exchange, which underlies the magnetism of these materials; we present an analytic formulation for the magnetic susceptibility of DMS in the paramagnetic range; we describe a somewhat empirical picture of the spin-glasslike freezing in the AII1−xMnxBVI alloys, and its relationship to the short range antiferromagnetic order revealed by neutron scattering; and we point out some not yet fully understood questions concerning spin dynamics in DMS revealed by electron paramagnetic resonance. We then discuss the sp-d exchange interaction between the sp band electrons of the AII1−xMnxBVI alloy and the 3d5 electrons associated with the Mn atoms. Here we present a general formulation of the exchange problem, followed by the most representative examples of its physical consequences, such as the giant Faraday rotation, the magnetic-field-induced metal-to-insulator transition in DMS, and the properties of the bound magnetic polaron. Next, we give considerable attention to the extremely exciting physics of quantum wells and superlattices involving DMS. We begin by describing the properties of the two-dimensional gas existing at a DMS interface. We then briefly describe the current status of the AII1−xMnxBVI layers and superlattices (systems already successfully grown; methods of preparation; and basic nonmagnetic properties of the layered structures). We then describe new features observed in the magnetic behavior of the quasi-two-dimensional ultrathin DMS layers; and we discuss the exciting possibilities which the sp-d exchange interaction offers in the quantum-well situation. Finally, we list a number of topics which involve DMS but which have not been explicitly covered in this review such as elastic properties of DMS, DMS-based devices, and the emerging work on diluted magnetic semiconductors other than the AII1−xMnxBVI alloys—and we provide relevant literature references to these omitted topics.

Từ khóa


Tài liệu tham khảo

1980, J. Phys. Soc. Jpn., 49, 797

1982, J. Appl. Phys., 53, 637

1982, J. Appl. Phys., 53, 7649, 10.1063/1.330175

1982, J. Appl. Phys., 53, 7644, 10.1063/1.330174

1982, J. Vac. Sci. Technol., 21, 220, 10.1116/1.571720

1983, Physica, 117B&118B, 461

1984, Prog. Cryst. Growth Charact., 50, 101

1985, Superlattices and Microstructures, 1, 327, 10.1016/0749-6036(85)90094-1

1985, J. Cryst. Growth, 72, 294, 10.1016/0022-0248(85)90161-7

1985, J. Cryst. Growth, 72, 364, 10.1016/0022-0248(85)90174-5

1987, J. Appl. Phys., 61, 3526, 10.1063/1.338714

1988, J. Appl. Phys., 63, 3291, 10.1063/1.340815

1988, J. Appl. Phys., 63, 3285, 10.1063/1.340814

1988, J. Cryst. Growth, 86, 8, 10.1016/0022-0248(90)90691-D

1978, Prog. Cryst. Growth Charact., 1, 289, 10.1016/0146-3535(78)90004-7

1984, Adv. Phys., 33, 193, 10.1080/00018738400101661

1988, Phys. Status Solidi B, 146, 11, 10.1002/pssb.2221460102

1986, J. Vac. Sci. Technol. A, 4, 2002, 10.1116/1.574016

1983, J. Solid State Chem., 46, 349, 10.1016/0022-4596(83)90160-3

1985, J. Appl. Phys., 58, 4056, 10.1063/1.335585

1986, Superlattices and Microstructures, 2, 89, 10.1016/0749-6036(86)90160-6

1984, Phys. Rev. B, 30, 2295, 10.1103/PhysRevB.30.2295

1987, Vac. Sci. Technol. A, 5, 3003, 10.1116/1.574247

1985, Solid State Commun., 56, 347, 10.1016/0038-1098(85)90399-0

1988, Phys. Rev. B, 37, 4137, 10.1103/PhysRevB.37.4137

1986, Phys. Rev. B, 33, 3407, 10.1103/PhysRevB.33.3407

1988, Phys. Rev. B, 37, 1860, 10.1103/PhysRevB.37.1860

1987, Phys. Rev. B, 35, 6868, 10.1103/PhysRevB.35.6868

1987, Phys. Rev. B, 35, 7966, 10.1103/PhysRevB.35.7966

1986, J. Vac. Sci. Technol. A, 44, 1974

1987, J. Vac. Sci. Technol. A, 55, 3024

1983, J. Vac. Sci. Technol. A, 1, 1678, 10.1116/1.572256

1986, Phys. Rev. Lett., 56, 2391, 10.1103/PhysRevLett.56.2391

1987, Phys. Rev. B, 35, 2340, 10.1103/PhysRevB.35.2340

1981, Solid State Commun., 40, 609, 10.1016/0038-1098(81)90586-X

1982, Solid State Commun., 44, 1547, 10.1016/0038-1098(82)90675-5

1986, Phys. Rev. B, 33, 1206, 10.1103/PhysRevB.33.1206

1985, Phys. Rev. B, 32, 6682, 10.1103/PhysRevB.32.6682

1985, Phys. Rev. B, 32, 3811

1980, Solid State Commun., 36, 127, 10.1016/0038-1098(80)90667-5

1984, J. Phys. C, 17, 615, 10.1088/0022-3719/17/4/006

1982, J. Appl. Phys., 52, 4189

1984, Solid State Commun., 51, 861, 10.1016/0038-1098(84)91088-3

1982, J. Vac. Sci. Technol., 21, 220, 10.1116/1.571720

1983, II Nuovo Cimento, 2D, 1911

1968, J. Phys. Soc. Jpn., 25, 455, 10.1143/JPSJ.25.455

1986, J. Vac. Sci. Technol. B, 4, 583

1986, Phys. Rev. B, 33, 8207, 10.1103/PhysRevB.33.8207

1954, J. Phys. Soc. Jpn., 9, 753, 10.1143/JPSJ.9.753

1984, Solid State Commun., 51, 861, 10.1016/0038-1098(84)91088-3

1977, Phys. Status Solidi B, 83, K133

1982, Phys. Status Solidi B, 113, 503, 10.1002/pssb.2221130215

1983, Solid State Commun., 47, 669, 10.1016/0038-1098(83)90630-0

1986, Phys. Rev. B, 33, 7383, 10.1103/PhysRevB.33.7383

1984, Solid State Commun., 52, 41, 10.1016/0038-1098(84)90714-2

1965, Phys. Rev., 138, A809, 10.1103/PhysRev.138.A809

1981, J. Luminescence, 23, 73, 10.1016/0022-2313(81)90191-5

1982, Phys. Status Solidi A, 69, 11, 10.1002/pssa.2210690102

1988, Phys. Rev. B, 37, 1860, 10.1103/PhysRevB.37.1860

1984, Phys. Rev. B, 30, 4021, 10.1103/PhysRevB.30.4021

1985, Phys. Rev. B, 32, 5132, 10.1103/PhysRevB.32.5132

1986, Phys. Rev. B, 33, 356, 10.1103/PhysRevB.33.356

1986, Phys. Rev. B, 33, 608, 10.1103/PhysRevB.33.608

1984, J. Appl. Phys., 55, 2305, 10.1063/1.333643

1987, J. Appl. Phys., 61, 3537, 10.1063/1.338716

1987, Solid State Commun., 62, 235, 10.1016/0038-1098(87)90802-7

1986, Phys. Rev. B, 33, 1789, 10.1103/PhysRevB.33.1789

1984, Phys. Rev. B, 29, 1310

1980, Phys. Rev. B, 22, 3344, 10.1103/PhysRevB.22.3344

1984, Physica, 126B, 469

1986, Solid State Commun., 59, 199, 10.1016/0038-1098(86)90579-X

1982, Phys. Rev. B, 25, 6484

1982, J. Magn. Magn. Mater., 30, 215, 10.1016/0304-8853(82)90200-1

1982, J. Appl. Phys., 53, 7644, 10.1063/1.330174

1979, Solid State Commun., 29, 435

1979, Z. Phys. B, 33, 31, 10.1007/BF01325811

1966, Proc. Phys. Soc. (London), 89, 859, 10.1088/0370-1328/89/4/311

1987, J. Appl. Phys., 61, 3540, 10.1063/1.338717

1986, J. Magn. Magn. Mater., 54–57, 1285

1986, Phys. Rev. Lett., 57, 1165, 10.1103/PhysRevLett.57.1165

1986, Appl. Phys. Lett., 49, 1053, 10.1063/1.97472

1985, Phys. Rev. B, 32, 5591, 10.1103/PhysRevB.32.5591

1983, J. Magn. Magn. Mater., 40, 185, 10.1016/0304-8853(83)90026-4

1981, Phys. Rev. B, 24, 355

1985, Phys. Rev. B, 31, 591, 10.1103/PhysRevB.31.591

1985, Phys. Rev. B, 31, 1

1988, Solid State Commun., 65, 801, 10.1016/0038-1098(88)90508-X

1988, Phys. Rev. B, 37, 9227, 10.1103/PhysRevB.37.9227

1987, Phys. Lett. A, 120, 483, 10.1016/0375-9601(87)90116-2

1953, Rev. Mod. Phys., 25, 269, 10.1103/RevModPhys.25.269

1954, J. Phys. Soc. Jpn., 9, 888, 10.1143/JPSJ.9.888

1985, Phys. Rev. B, 31, 4420, 10.1103/PhysRevB.31.4420

1948, Phys. Rev., 74, 1168, 10.1103/PhysRev.74.1168

1974, Phys. Lett., 48A, 81

1986, J. Magn. Magn. Mater., 54/57, 181, 10.1016/0304-8853(86)90541-X

1960, Phys. Rev., 120, 91, 10.1103/PhysRev.120.91

1966, Phys. Rev., 146, 575, 10.1103/PhysRev.146.575

1973, Phys. Rev. B, 8, 3811, 10.1103/PhysRevB.8.3811

1978, Phys. Status Solidi B, 89, 655, 10.1002/pssb.2220890241

1979, J. Magn. Magn. Mater., 11, 157, 10.1016/0304-8853(79)90255-5

1978, Phys. Status Solidi B, 88, 73, 10.1002/pssb.2220880108

1982, Phys. Rev. B, 26, 931, 10.1103/PhysRevB.26.931

1978, J. Phys. (Paris) Colloq., 39, C8

1979, Phys. Status Solidi B, 95, 359, 10.1002/pssb.2220950205

1983, Physica, 117&118, 449

1988, Phys. Rev. B, 37, 4137, 10.1103/PhysRevB.37.4137

1981, Phys. Rev. B, 24, 1961, 10.1103/PhysRevB.24.1961

1981, J. Phys. C, 14, 5689, 10.1088/0022-3719/14/36/012

1978, Solid State Commun., 27, 1233, 10.1016/0038-1098(78)91149-3

1977, Phys. Rev. B, 16, 3603, 10.1103/PhysRevB.16.3603

1979, Solid State Commun., 28, 25

1984, Phys. Rev. B, 29, 6652, 10.1103/PhysRevB.29.6652

1983, Phys. Status Solidi B, 117, 67, 10.1002/pssb.2221170106

1979, Phys. Status Solidi B, 96, 497, 10.1002/pssb.2220960202

1983, Physica, 117B&118B, 452

1984, Solid State Commun., 50, 509, 10.1016/0038-1098(84)90318-1

1983, Solid State Commun., 48, 845, 10.1016/0038-1098(83)90130-8

1980, Phys. Status Solidi B, 102, 603, 10.1002/pssb.2221020219

1980, Zh. Eksp. Teor Fiz., 79, 1554

1980, Sov. Phys. JETP, 52, 783

1983, Phys. Rev. B, 28, 6907, 10.1103/PhysRevB.28.6907

1986, Phys. Rev. B, 34, 5894, 10.1103/PhysRevB.34.5894

1977, Zh. Eksp. Teor. Fiz., 73, 608

1981, J. Magn. Magn. Mater., 25, 215, 10.1016/0304-8853(81)90122-0

1984, Solid State Commun., 50, 658

1986, Phys. Rev. B, 34, 3313, 10.1103/PhysRevB.34.3313

1983, Appl. Opt., 22, 3152, 10.1364/AO.22.003152

1986, Phys. Rev. B, 34, 6943, 10.1103/PhysRevB.34.6943

1980, J. Phys. Soc. Jpn., 49, 807, 10.1143/JPSJ.49.807

1966, Proc. Phys. Soc., 87, 809, 10.1088/0370-1328/87/3/325

1985, J. Cryst. Growth, 72, 385, 10.1016/0022-0248(85)90178-2

1983, Physica B, 117&118, 476

1986, Phys. Rev. Lett., 56, 508, 10.1103/PhysRevLett.56.508

1981, Phys. Rev. Lett., 51, 706

1986, Phys. Rev. Lett., 56, 2419, 10.1103/PhysRevLett.56.2419

1987, Acta. Physica Polonica A, 71, 104

1982, Phys. Rev. Lett., 48, 355, 10.1103/PhysRevLett.48.355

1983, Phys. Rev. B, 28, 1548, 10.1103/PhysRevB.28.1548

1981, Phys. Rev. Lett., 46, 735, 10.1103/PhysRevLett.46.735

1980, J. Phys. Jpn., 49

1983, Phys. Rev. B, 27, 4848, 10.1103/PhysRevB.27.4848

1985, Phys. Rev. B, 31, 2388, 10.1103/PhysRevB.31.2388

1984, Appl. Phys. Lett., 45, 440, 10.1063/1.95223

1984, Appl. Phys. Lett., 45, 92, 10.1063/1.94981

1985, Appl. Phys. Lett., 47, 169, 10.1063/1.96251

1986, Appl. Phys. Lett., 49, 713, 10.1063/1.97576

1987, Appl. Phys. Lett., 56, 597

1984, Surf. Sci., 142, 588, 10.1016/0039-6028(84)90366-2

1986, Acta. Phys. Polon. A, 69, 929

1984, Appl. Phys. Lett., 45, 1214, 10.1063/1.95102

1985, Acta. Phys. Polon. A, 67, 297

1987, Acta. Phys. Polon. A, 71, 145

1986, Phys. Status Solidi B, 134, K149

1984, Appl. Phys. Lett., 45, 974, 10.1063/1.95469

1985, Appl. Phys. Lett., 47, 169, 10.1063/1.96251

1986, Appl. Phys. Lett., 48, 1482, 10.1063/1.96896

1987, Appl. Phys. Lett., 50, 848, 10.1063/1.98010

1988, J. Appl. Phys., 63, 3303, 10.1063/1.340818

1984, J. Cryst. Growth, 66, 480, 10.1016/0022-0248(84)90236-7

1985, Ann. Rev. Mater. Sci., 15, 177, 10.1146/annurev.ms.15.080185.001141

1986, J. Vac. Sci. Technol. A, 4, 2120, 10.1116/1.574040

1986, Mater. Res. Soc. Symp. Proc., 56, 223

1985, Appl. Phys. Lett., 47, 989, 10.1063/1.95953

1986, Phys. Rev. B, 33, 2589, 10.1103/PhysRevB.33.2589

1985, Appl. Phys. Lett., 47, 1039, 10.1063/1.96371

1985, Appl. Phys. Lett., 46, 238, 10.1063/1.95695

1986, J. Vac. Sci. Technol. A, 4, 2126, 10.1116/1.574041

1986, Appl. Phys. Lett., 48, 275, 10.1063/1.96579

1987, J. Vac. Sci. Technol. A, 5, 3089, 10.1116/1.574222

1956, Phys. Rev., 104, 924, 10.1103/PhysRev.104.924

1987, Phys. Rev. Lett., 59, 1733, 10.1103/PhysRevLett.59.1733

1966, Phys. Rev. Lett., 17, 1133, 10.1103/PhysRevLett.17.1133

1982, Phys. Rev. Lett., 49, 1041, 10.1103/PhysRevLett.49.1041

1986, Appl. Phys. Lett., 49, 1095, 10.1063/1.97432

1986, Appl. Phys. Lett., 49, 1735, 10.1063/1.97231

1987, Appl. Phys. Lett., 50, 691, 10.1063/1.98068

1986, Appl. Phys. Lett., 48, 478, 10.1063/1.97007

1985, Solid State Commun., 56, 255

1985, J. Luminescence, 34, 89, 10.1016/0022-2313(85)90098-5

1985, Phys. Rev. B, 31, 4056, 10.1103/PhysRevB.31.4056

1985, Appl. Phys. Lett., 47, 59, 10.1063/1.96404

1985, Appl. Phys. Lett., 46, 692, 10.1063/1.95477

1985, Phys. Rev. B, 32, 6962, 10.1103/PhysRevB.32.6962

1986, Solid State Commun., 57, 853, 10.1016/0038-1098(86)90165-1

1986, Phys. Rev. B, 33, 2923, 10.1103/PhysRevB.33.2923

1986, Phys. Rev. B, 33, 1160, 10.1103/PhysRevB.33.1160

1982, Phys. Rev. B, 25, 2681, 10.1103/PhysRevB.25.2681

1981, J. Phys. C, 14, 4677, 10.1088/0022-3719/14/31/015

1983, Phys. Rev. B, 27, 3471, 10.1103/PhysRevB.27.3471

1980, IEEE J. Quantum Electron., QE-16, 1365

1982, Appl. Phys. Lett., 41, 585, 10.1063/1.93617

1985, Phys. Rev. B, 32, 323, 10.1103/PhysRevB.32.323

1984, Appl. Phys. Lett., 45, 974, 10.1063/1.95469

1981, J. Phys. (Paris) Colloq., 42, C6

1987, Phys. Status Solidi B, 139, 213, 10.1002/pssb.2221390119

1986, J. Magn. Magn. Mater., 59, 105, 10.1016/0304-8853(86)90016-8

1985, J. Less-Common Metal., 106, 13, 10.1016/0022-5088(85)90360-1

1985, J. Appl. Phys., 57, 1932, 10.1063/1.334427

1985, J. Appl. Phys., 57, 1937, 10.1063/1.334428

1985, Acta Phys. Polon. A, 67, 379

1984, J. Electron. Mater., 13, 493, 10.1007/BF02656649

1980, Solid State Commun., 33, 133, 10.1016/0038-1098(80)90714-0

1986, Acta Phys. Polon A, 69, 1043

1988, Solid State Commun., 65, 238

1986, Solid State Commun., 60, 165, 10.1016/0038-1098(86)90552-1

1987, Phys. Rev. B, 35, 3900, 10.1103/PhysRevB.35.3900

1987, J. Vac. Sci. Technol. A, 5, 2995, 10.1116/1.574246

1988, J. Appl. Phys., 63, 3279, 10.1063/1.340813

1970, Rep. Progr. Phys., 33, 1193, 10.1088/0034-4885/33/3/307

1979, Phys. Status Solidi A, 53, 11

1979, Phys. Status Solidi A, 54, 11, 10.1002/pssa.2210540102

1974, Solid State Commun., 15, 1459, 10.1016/0038-1098(74)91402-1

1977, Phys. Rev. B, 15, 844, 10.1103/PhysRevB.15.844

1988, Phys. Rev. B, 37, 4875