The rate sensitivity and plastic deformation of nanocrystalline tantalum films at nanoscale

Nanoscale Research Letters - Tập 6 - Trang 1-6 - 2011
Zhenhua Cao1,2, Qianwei She1,2, Yongli Huang3, Xiangkang Meng1,2
1National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, People’s Republic of China
2Department of Material Science and Engineering, Nanjing University, Nanjing, People's Republic of China
3Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Faculty of Materials and Photoelectronics Physics, Xiangtan University, Xiangtan, People's Republic of China

Tóm tắt

Nanoindentation creep and loading rate change tests were employed to examine the rate sensitivity (m) and hardness of nanocrystalline tetragonal Ta films. Experimental results suggested that the m increased with the decrease of feature scale, such as grain size and indent depth. The magnitude of m is much less than the corresponding grain boundary (GB) sliding deformation with m of 0.5. Hardness softening behavior was observed for smaller grain size, which supports the GB sliding mechanism. The rate-controlling deformation was interpreted by the GB-mediated processes involving atomic diffusion and the generation of dislocation at GB.

Tài liệu tham khảo

Schiøtz J, Jacobsen KW: A Maximum in the Strength of Nanocrystalline Copper. Science 2003, 301: 1357. Van Vliet KJ, Tsikata S, Suresh S: Model experiments for direct visualization of grain boundary deformation in nanocrystalline metals. Appl Phys Lett 2003, 83: 1441. 10.1063/1.1597417 Giga A, Kimoto Y, Takigawa Y, Higashi K: Demonstration of an inverse Hall-Petch relationship in electrodeposited nanocrystalline Ni-W alloys through tensile testing. Scr Mater 2006, 55: 143. 10.1016/j.scriptamat.2006.03.047 Jian SR, Chen GJ, Lin TC: Berkovich Nanoindentation on AlN Thin Films. Nanoscale Res Lett 2010, 5: 935. 10.1007/s11671-010-9582-5 Li JW, Ni YH, Wang HS, Mei JF: Effects of Crystalline Anisotropy and Indenter Size on Nanoindentation by Multiscale Simulation. Nanoscale Res Lett 2010, 5: 420. 10.1007/s11671-009-9500-x Rupert TJ, Gianola DS, Gan Y, Hemker KJ: Experimental Observations of Stress-Driven Grain Boundary Migration. Science 2009, 326: 1686. 10.1126/science.1178226 Cheng S, Ma E, Wang YM, Kecskes LJ, Youssef KM, Koch CC, Trociewitz UP, Han K: Tensile properties of in situ consolidated nanocrystalline Cu. Acta Mater 2005, 53: 1521. 10.1016/j.actamat.2004.12.005 Cao ZH, Lu HM, Meng XK, Ngan AHW: Indentation size dependent plastic deformation of nanocrystalline and ultrafine grain Cu films at nanoscale. J Appl Phys 2009, 105: 083521. 10.1063/1.3110087 Chen J, Lu L, Lu K: Hardness and strain rate sensitivity of nanocrystalline Cu. Scr Mater 2006, 54: 1913. 10.1016/j.scriptamat.2006.02.022 Jiang ZH, Liu XL, Li GY, Jiang Q, Lian JS: Strain rate sensitivity of a nanocrystalline Cu synthesized by electric brush plating. Appl Phys Lett 2006, 88: 143115. 10.1063/1.2193467 Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater 2003, 51: 5159. 10.1016/S1359-6454(03)00365-3 Shen YF, Lu L, Dao M, Suresh S: Strain rate sensitivity of Cu with nanoscale twins. Scr Mater 2006, 55: 319. 10.1016/j.scriptamat.2006.04.046 Fan GJ, Choo H, Liaw PK, Lavernia EJ: Plastic deformation and fracture of ultrafine-grained Al-Mg alloys with a bimodal grain size distribution. Acta Mater 2006, 54: 1759. 10.1016/j.actamat.2005.11.044 Wang YM, Hodge AM, Bythrow PM, Barbee TW Jr, Hamza AV: Negative strain rate sensitivity in ultrahigh-strength nanocrystalline tantalum. Appl Phys Lett 2006, 89: 081903. 10.1063/1.2338006 Cao ZH, Li PY, Lu HM, Huang YL, Zhou YC, Meng XK: Indentation size effects on the creep behavior of nanocrystalline tetragonal Ta films. Scr Mater 2009, 60: 415. 10.1016/j.scriptamat.2008.11.016 Li H, Ngan AHW: Size effects of nanoindentation creep. J Mater Res 2004, 19: 513. 10.1557/jmr.2004.19.2.513 Kwon KW, Lee HJ, Sinclair R: Solid-state amorphization at tetragonal-Ta/Cu interfaces. Appl Phys Lett 1999, 75: 935. 10.1063/1.124559 Zhang M, Zhang YF, Rack PD, Miller MK, Nieh TG: Nanocrystalline tetragonal tantalum thin films. Scr Mater 2007, 57: 1032. 10.1016/j.scriptamat.2007.07.041 Klug HP, Alexander LE: Diffraction Procedures for Polycrystalline and Amorphous Materials. Volume Chapter 9. New York: Wiley; 1974. Oliver WC, Pharr GM: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res 1992, 7: 1564. 10.1557/JMR.1992.1564 Kalkman AJ, Verbruggen AH, Janssen GCAM: Young's modulus measurements and grain boundary sliding in free-standing thin metal films. Appl Phys Lett 2001, 78: 2673. 10.1063/1.1367896 Shamsutdinov NR, Böttger AJ, Thijsse BJ: Grain coalescence and its effect on stress and elasticity in nanocrystalline metal films. Acta Mater 2007, 55: 777. 10.1016/j.actamat.2006.07.004 Jonnalagadda K, Karanjgaokar N, Chasiotis I, Chee J, Peroulis D: Strain rate sensitivity of nanocrystalline Au films at room temperature. Acta Mater 2010, 58: 4674. 10.1016/j.actamat.2010.04.048 Baker SP, Vinci RP, Arias T: Elastic and anelastic behavior of materials in small dimensions. MRS Bull 2002, 27: 26. 10.1557/mrs2002.16 Lucas BN, Oliver WC: Indentation power-law creep of high-purity indium. Metall Mater Trans A 1999, 30A: 601. 10.1007/s11661-999-0051-7 Ranganathan S, Divakar R, Raghunathan VS: Interface structures in nanocrystalline materials. Scr Mater 2001, 44: 1169. 10.1016/S1359-6462(01)00678-9 Meyers MA, Mishra A, Benson DJ: Mechanical properties of nanocrystalline materials. Prog Mater Sci 2006, 51: 427. 10.1016/j.pmatsci.2005.08.003 Coble RL: A model for boundary diffusion controlled creep in polycrystallinematerial. J Appl Phys 1963, 34: 1679. 10.1063/1.1702656 Luthy H, White RA, Sherby OD: Grain-boundary sliding and deformation mechanism maps. Mater Sci Eng 1979, 39: 211. 10.1016/0025-5416(79)90060-0 Meyers MA, Chawla KK: Mechanical Metallurgy: Principles and Applications. Englewood Cliffs, NJ: Prentice-Hall; 1984:496. Wolf D, Yamakov V, Phillpot SR, Mukherjee A, Gleiter H: Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments. Acta Mater 2005, 53: 1. 10.1016/j.actamat.2004.08.045 Hugo RC, Kung H, Weertman JR, Mitra R, Knapp JA, Follstaedt DM: In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films. Acta Mater 2003, 51: 1937. 10.1016/S1359-6454(02)00599-2 Derlet PM, Hasnaoui A, Van Swygenhoven H: Atomistic simulations as guidance to experiments. Scr Mater 2003, 49: 629. 10.1016/S1359-6462(03)00400-7 Van Swygenhoven H, Derlet PM, Frøseth AG: Nucleation and propagation of dislocations in nanocrystalline fcc metals. Acta Mater 2006, 54: 1975. 10.1016/j.actamat.2005.12.026 Cheng S, Spencer JA, Milligan WW: Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals. Acta Mater 2003, 51: 4505. 10.1016/S1359-6454(03)00286-6 Wang YM, Hamza AV, Ma E: Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater 2006, 54: 2715. 10.1016/j.actamat.2006.02.013 Yamakov V, Wolf D, Phillpot SR, Gleiter H: Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation. Acta Mater 2002, 50: 61. 10.1016/S1359-6454(01)00329-9 Van Swygenhoven H, Spaczer M, Caro A, Farkas D: Competing plastic deformation mechanisms in nanophase metals. Phys Rev B 1999, 60: 22. 10.1103/PhysRevB.60.22