How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios

Biogeosciences - Tập 9 Số 8 - Trang 3151-3171
Pia Gottschalk1,2, Jo Smith2, M. Wattenbach2, Jessica Bellarby2, Elke Stehfest3, Nigel W. Arnell4, Timothy J. Osborn5, Chris Jones6, Pete Smith2
1Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
2University of Aberdeen, Institute of Biological and Environmental Sciences, School of Biological Sciences, 23 St Machar Drive, Aberdeen, AB24 3UU, UK
3Netherlands Environmental Assessment Agency. Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
4Walker Institute for Climate System Research, University of Reading, Earley Gate, Reading, UK
5Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, RG6 6AR, UK
6Hadley Centre, Met Office, Exeter, EX1 3PB, NR4 7TJ, UK

Tóm tắt

Abstract. We use a soil carbon (C) model (RothC), driven by a range of climate models for a range of climate scenarios to examine the impacts of future climate on global soil organic carbon (SOC) stocks. The results suggest an overall global increase in SOC stocks by 2100 under all scenarios, but with a different extent of increase among the climate model and emissions scenarios. The impacts of projected land use changes are also simulated, but have relatively minor impacts at the global scale. Whether soils gain or lose SOC depends upon the balance between C inputs and decomposition. Changes in net primary production (NPP) change C inputs to the soil, whilst decomposition usually increases under warmer temperatures, but can also be slowed by decreased soil moisture. Underlying the global trend of increasing SOC under future climate is a complex pattern of regional SOC change. SOC losses are projected to occur in northern latitudes where higher SOC decomposition rates due to higher temperatures are not balanced by increased NPP, whereas in tropical regions, NPP increases override losses due to higher SOC decomposition. The spatial heterogeneity in the response of SOC to changing climate shows how delicately balanced the competing gain and loss processes are, with subtle changes in temperature, moisture, soil type and land use, interacting to determine whether SOC increases or decreases in the future. Our results suggest that we should stop looking for a single answer regarding whether SOC stocks will increase or decrease under future climate, since there is no single answer. Instead, we should focus on improving our prediction of the factors that determine the size and direction of change, and the land management practices that can be implemented to protect and enhance SOC stocks.

Từ khóa


Tài liệu tham khảo

Alcamo, J., Kreileman, G. J. J., Krol, M. S., and Zuidema, G.: Modeling the global society-biosphere-climate system: Part 1: Model description and testing, Water, Air, Soil Pollut., 76, 1–35, 1994.

Batjes, N. H.: ISRIC-WISE global data set of derived soil properties an a 0.5 by 0.5 degree grid (Version 3.0). Report 2005/08, ISRIC – World Soil Information, Wageningen (with data set), 2005.

Berthelot, M., Friedlingstein, P., Ciais, P., Dufresne, J.-L., and Monfray, P.: How uncertainties in future climate change predictions translate into future terrestrial carbon fluxes, Glob. Change Biol., 11, 959–970, 2005.

Cerri, C. E. P., Coleman, K., Jenkinson, D. S., Bernoux, M., Victoria, R., and Cerri, C. C.: Modeling Soil Carbon from Forest and Pasture Ecosystems of Amazon, Brazil, Soil Sci. Soc. Am. J., 67, 1879–1887, 2003.

Coleman, K., Jenkinson, D. S., Crocker, G. J., Grace, P. R., Klir, J., Korschens, M., Poulton, P. R., and Richter, D. D.: Simulating trends in soil organic carbon in long-term experiments using RothC-26.3, Geoderma, 81, 29–44, 1997.

Coleman, K. W., and Jenkinson, D. S.: RothC-26.3 - A model for the turnover of carbon in soil., in: Evaluation of soil organic matter models using existing long-term datasets, edited by: Powlson, D. S., Smith, P., and Smith, J., NATO ASI Series I, Springer-Verlag, Heidelberg, 237–246, 1996.

Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton, J. A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., Kiehl, J. T., Large, W. G., McKenna, D. S., Santer, B. D., Smith, R. D.: The Community Climate System Model Version 3 (CCSM3), J. Clim., 19, 2122–2143, 2006.

Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408, 184–187, 2000.

Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S., Smith, B., White, A., and Young-Molling, C.: Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models, Glob. Change Biol., 7, 357–373, 2001.

Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, 440, 165–173, 2006.

Diels, J., Vanlauwe, B., Van der Meersch, M. K., Sanginga, N., and Merckx, R.: Long-term soil organic carbon dynamics in a subhumid tropical climate: 13C data in mixed C3/C4 cropping and modeling with ROTHC, Soil Biol. Biochem., 36, 1739–1750, 2004.

Dufresne, J. L., Fairhead, L., Le Treut, H., Berthelot, M., Bopp, L., Ciais, P., Friedlingstein, P., and Monfray, P.: On the magnitude of positive feedback between future climate change and the carbon cycle, Geophys. Res. Lett., 29, 1405, 2002.

Eglin, T., Ciais, P., Piao, S. L., Barre, P., Bellassen, V., Cadule, P., Chenu, C., Gasser, T., Koven, C., Reichstein, M., and Smith, P.: Historical and future perspectives of global soil carbon response to climate and land-use changes, Tellus B, 62, 700–718, 2010.

Falloon, P., and Smith, P.: Simulating SOC changes in long-term experiments with RothC and CENTURY: model evaluation for a regional scale application, Soil Use Manage., 18, 101–111, https://doi.org/10.1111/j.1475-2743.2002.tb00227.x, 2002.

Falloon, P. D., Smith, P., Smith, J. U., Szabó, J., Coleman, K., and Marshall, S.: Regional estimates of carbon sequestration potential: linking the Rothamsted Carbon Model to GIS databases, Biol. Fertil. Soils, 27, 236–241, 1998.

Fang, C., Smith, P., Moncrieff, J. B., and Smith, J. U.: Similar response of labile and resistant soil organic matter pools to changes in temperature, Nature, 433, 57–59, 2005.

Friedlingstein, P., Dufresne, J. L., Cox, P. M., and Rayner, P.: How positive is the feedback between climate change and the carbon cycle?, Tellus B, 55, 692–700, 2003.

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K. G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.: Climate-Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison, J. Clim., 19, 3337–3353, https://doi.org/10.1175/JCLI3800.1, 2006.

Giorgetta, M.A., Brasseur, G.P., Roeckner, E., Marotzke, J.: Preface to Special Section on Climate Models at the Max Planck Institute for Meteorology, J. Clim. 19, 3769–3770, 2006.

Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell, J. F. B., and Wood, R. A.: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dynam., 16, 147–168, 2000.

Gordon, H. B., Rotstayn, L. D., McGregor, J. L., Dix, M. R., Koalczyk, E. A., O'Farrell, S. P., Waterman, L. J., Hirst, A. C., Wilson, S. G., Collier, M. A., Watterson, I. G., and Elliott, T. I.: The CSIRO Mk3 Climate System Model [Electronic publication]. Aspendale: CSIRO Atmospheric Research, Technical paper no. 60, 130 pp., 2002.

Guo, L. B. and Gifford, R. M.: Soil carbon stocks and land use change: a meta analysis, Glob. Change Biol., 8, 345–360, https://doi.org/10.1046/j.1354-1013.2002.00486.x, 2002.

Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J.-L., Fairhead, L., Filiberti, M.-A., Friedlingstein, P., Grandpeix, J.-Y., Krinner, G., LeVan, P., Li, Z.-X., Lott, F.: The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection, Clim. Dynam., 27, 787–813, 2006.

Ito, A.: Climate-related uncertainties in projections of the twenty-first century terrestrial carbon budget: off-line model experiments using IPCC greenhouse-gas scenarios and AOGCM climate projections, Clim. Dynam., 24, 435–448, 2005.

Jenkinson, D. S., Adams, D. E., and Wild, A.: Model estimates of CO2 emissions from soil in response to global warming, Nature, 351, 304–306, 1991.

Jenkinson, D. S., Harris, H. C., Ryan, J., McNeill, A. M., Pilbeam, C. J., and Coleman, K.: Organic matter turnover in a calcareous clay soil from Syria under a two-course cereal rotation, Soil Biol. Biochem., 31, 687–693, 1999.

Jobbagy, E. G. and Jackson, R. B.: The Vertical Distribution of Soil Organic Carbon and Its Relation to Climate and Vegetation, Ecol. Appl., 10, 423–436, 2000.

Johns, T. C., Durman, C. F., Banks, H. T., Roberts, M. J., McLaren, A. J., Ridley, J. K., Senior, C. A., Williams, K. D., Jones, A., Rickard, G. J., Cusack, S., Ingram, W. J., Crucifix, M., Sexton, D. M. H., Joshi, M. M., Dong, B. W., Spencer, H., Hill, R. S. R., Gregory, J.M., Keen, A. B., Pardaens, A. K., Lowe, J.A., Bodas-Salcedo, A., Stark, S., Searl, Y.: The New Hadley Centre Climate Model (HadGEM1): Evaluation of Coupled Simulations, J. Clim., 19, 1327–1353, 2006.

Jones, C., McConnell, C., Coleman, K., Cox, P., Falloon, P., Jenkinson, D., and Powlson, D.: Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil, Glob. Change Biol., 11, 154–166, https://doi.org/10.1111/j.1365-2486.2004.00885.x, 2005.

Joosten, H.: The IMCG global peatland database. International Mire Conservation Group, available at: www.imcg.net/gpd/gpd.htm, 2009.

Kamoni, P. T., Gicheru, P. T., Wokabi, S. M., Easter, M., Milne, E., Coleman, K., Falloon, P., Paustian, K., Killian, K., and Kihanda, F. M.: Evaluation of two soil carbon models using two Kenyan long term experimental datasets, Agr. Ecosyst. Environ., 122, 95–104, 2007.

Klein Goldewijk, K., Minnen, J. G., Kreileman, G. J. J., Vloedbeld, M., and Leemans, R.: Simulating the carbon flux between the terrestrial environment and the atmosphere, Water, Air, Soil Pollut., 76, 199–230, 1994.

Knorr, W., Prentice, I. C., House, J. I., and Holland, E. A.: Long-term sensitivity of soil carbon turnover to warming, Nature, 433, 298–301, 2005.

Lal, R.: Soil erosion and the global carbon budget, Environ. Int., 29, 437–450, https://doi.org/10.1016/s0160-4120(02)00192-7, 2003.

Lal, R.: Soil carbon sequestration impacts on global climate change and food security, Science, 304, 1623–1627, 2004.

Lieth, H.: The primary productivity of the world, Nature and Resources UNESCO, VIII, 5–10, 1972.

Lieth, H.: Modelling the primary productivity of the world, in: Primary productivity of the Biosphere, edited by: Lieth, H., and Whittaker, R. H., Springer-Verlag, New York, 237–263, 1975.

Lucht, W., Schaphoff, S., Erbrecht, T., Heyder, U., Cramer, W.: Terrestrial vegetation redistribution and carbon balance under climate change, Carbon Balance and Management, p. 7, 2006.

McFarlane, N. A., Scinocca, J. F., Lazare, M., Harvey, R. Verseghy, D., Li, J.: The CCCma third generation atmospheric general circulation model. CCCma Internal Report, 25 pp, 2005.

McGill, W. B.: Review and classification of 10 soil organic matter (SOM) models, in: Evaluation of Soil Organic Matter models Using Long-Term Datasets, NATO ASI Series I, edited by: Powlson, D. S., Smith, P., and Smith, J., Springer-Verlag, Heidelberg, Germany, 111–132, 1996.

MNP: Integrated modelling of global environmental change. An overview of IMAGE 2.4, edited by: Bouwman, A. F., Kram, T., and Klein Goldewijk, K., Netherlands Environmental Assessment Agency (MNP), Bilthoven, The Netherlands, 2006.

Müller, C., Eickhout, B., Zaehle, S., Bondeau, A., Cramer, W., and Lucht, W.: Effects of changes in CO2, climate, and land use on the carbon balance of the land biosphere during the 21st century, J. Geophys. Res., 112, G02032, https://doi.org/10.1029/2006jg000388, 2007.

Peng, C., Zhou, X., Zhao, S., Wang, X., Zhu, B., Piao, S., Fang, J.: Quantifying the response of forest carbon balance to future climate change in Northeastern China: Model validation and prediction, Global Planet. Change 66, 179–194, 2009.

Post, W. M., Emanuel, W. R., Zinke, P. J., and Stangenberger, A. G.: Soil carbon pools and world life zones, Nature, 298, 156–159, 1982.

Qian, H., Joseph, R., and Zeng, N.: Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections, Glob. Change Biol., 16, 641–656, https://doi.org/10.1111/j.1365-2486.2009.01989.x, 2010.

Schaphoff, S., Lucht, W., Gerten, D., Sitch, S., Cramer, W., and Prentice, I.: Terrestrial biosphere carbon storage under alternative climate projections, Clim. Change, 74, 97–122, 2006.

Scinocca, J. F., McFarlane, N. A., Lazare, M., Li, J., and Plummer, D.: Technical Note: The CCCma third generation AGCM and its extension into the middle atmosphere, Atmos. Chem. Phys., 8, 7055–7074, https://doi.org/10.5194/acp-8-7055-2008, 2008.

Shirato, Y., Paisancharoen, K., Sangtong, P., Nakviro, C., Yokozawa, M., and Matsumoto, N.: Testing the Rothamsted Carbon Model against data from long-term experiments on upland soils in Thailand, Europ. J. Soil Sci., 56, 179–188, https://doi.org/10.1111/j.1365-2389.2004.00659.x, 2005.

Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L., Betts, R., Ciais, P., Cox, P., Friedlingstein, P., Jones, C. D., Prentice, I. C., and Woodward, F. I.: Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs), Glob. Change Biol., 14, 2015–2039, https://doi.org/10.1111/j.1365-2486.2008.01626.x, 2008.

Skjemstad, J. O., Spouncer, L. R., Cowie, B., and Swift, R. S.: Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable organic carbon pools, Austr. J. Soil Res., 42, 79–88, 2004.

Smith, J., Smith, P., Wattenbach, M., Zaehle, S., Hiederer, R., Jones, R. J. A., Montanarella, L., Rounsevell, M. D. A., Reginster, I., and Ewert, F.: Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080, Glob. Change Biol., 11, 2141–2152, 2005.

Smith, P., Smith, J. U., Powlson, D. S., Coleman, K., Jenkinson, D. S., McGill, W. B., Arah, J. R. M., Thornley, J. H. M., Chertov, O. G., Komarov, A. S., Franko, U., Frolking, S., Li, C., Jensen, L. S., Mueller, T., Kelly, R. H., Parton, W. J., Klein-Gunnewiek, H., Whitmore, A. P., and Molina, J. A. E.: A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments, Geoderma, 81, 153–225, 1997.

Smith, P.: Carbon sequestration in croplands: the potential in Europe and the global context, Eur. J. Agron., 20, 229–236, 2004.

Smith, P., Smith, J., Wattenbach, M., Meyer, J., Lindner, M., Zaehle, S., Hiederer, R., Jones, R. J. A., Montanarella, L., Rounsevell, M., Reginster, I., and Kankaanpää, S.: Projected changes in mineral soil carbon of European forests, 1990–2100, Canad. J. Soil Sci., 86, 159–169, 2006.

Smith, P., Smith, J. U., Franko, U., Kuka, K., Romanenkov, V. A., Shevtsova, L. K., Wattenbach, M., Gottschalk, P., Sirotenko, O. D., Rukhovich, D. I., Koroleva, P. V., Romanenko, I. A., and Lisovoi, N. V.: Changes in soil organic carbon stocks in the croplands of European Russia and the Ukraine, 1990–2070; comparison of three models and implications for climate mitigation, Reg. Environ. Change, 7, 105–119, https://doi.org/10.1007/s10113-007-0028-2, 2007.

Smith, P.: Land use change and soil organic carbon dynamics, Nutr. Cycl. Agroecosys., 81, 169–178, 2008.

Smith, P., Fang, C., Dawson, J. J. C., Moncrieff, J. B., and Donald, L. S.: Impact of Global Warming on Soil Organic Carbon, Adv. Agron., 97, 1–43, 2008.

Smith, W., Grant, B., Desjardins, R., Qian, B., Hutchinson, J., and Gameda, S.: Potential impact of climate change on carbon in agricultural soils in Canada 2000–2099, Climatic Change, 93, 319–333, 2009.

Tate, K. R., Scott, N. A., Parshotam, A., Brown, L., Wilde, R. H., Giltrap, D. J., Trustrum, N. A., Gomez, B., and Ross, D. J.: A multi-scale analysis of a terrestrial carbon budget: Is New Zealand a source or sink of carbon?, Agr. Ecosyst. Environ., 82, 229–246, 2000.

Van Minnen, J., Klein Goldewijk, K., Stehfest, E., Eickhout, B., van Drecht, G., and Leemans, R.: The importance of three centuries of land-use change for the global and regional terrestrial carbon cycle, Climatic Change, 97, 123–144, 2009.

Van Minnen, J. G., Leemans, R., and Ihle, F.: Defining the importance of including transient ecosystem responses to simulate C-cycle dynamics in a global change model, Glob. Change Biol., 6, 595–611, 2000.

Wang, Y. P., and Polglase, P. J.: Carbon balance in the tundra, boreal forest and humid tropical forest during climate change: scaling up from leaf physiology and soil carbon dynamics, Plant, Cell Environ., 18, 1226–1244, 1995.

Zheng, D. L., Prince, S., and Wright, R.: Terrestrial net primary production estimates for 0.5 degrees grid cells from field observations - a contribution to global biogeochemical modelling, Glob. Change Biol., 9, 46–64, 2003.