Characterization of three different sensory fibers by use of neonatal capsaicin treatment, spinal antagonism and a novel electrical stimulation-induced paw flexion test

Molecular Pain - Tập 2 - Trang 1-5 - 2006
Misaki Matsumoto1, Makoto Inoue1, Andreas Hald1, Asuka Yamaguchi1, Hiroshi Ueda1
1Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan

Tóm tắt

In the present study, we first report an in vivo characterization of flexor responses induced by three distinct sine-wave stimuli in the electrical stimulation-induced paw flexion (EPF) test in mice. The fixed sine-wave electric stimulations of 5 Hz (C-fiber), 250 Hz (Aδ-fiber) and 2000 Hz (Aβ-fiber) to the hind paw of mice induced a paw-flexion response and vocalization. The average threshold for paw flexor responses by sine-wave stimulations was much lower than that for vocalization. Neonatally (P3) pretreatment with capsaicin to degenerate polymodal substance P-ergic C-fiber neurons increased the threshold to 5 Hz (C-fiber) stimuli, but not to 250 Hz (Aδ-fiber) and 2000 Hz (Aβ-fiber). The flexor responses to 5 Hz stimuli were significantly blocked by intrathecal (i.t.) pretreatment with both CP-99994 and MK-801, an NK1 and NMDA receptor antagonist, respectively, but not by CNQX, an AMPA/kainate receptor antagonist. On the other hand, the flexor responses induced by 250 Hz stimuli were blocked by MK-801 (i.t.) but not by CP-99994 or CNQX. In contrast, flexor responses induced by 2000 Hz stimuli were only blocked by CNQX treatment. These data suggest that we have identified three pharmacologically different categories of responses mediated through different primary afferent fibers. Furthermore, we also carried out characterization of the in vivo functional sensitivity of each of the sensory fiber types in nerve-injured mice using the EPF test, and found that the threshold to both 250 Hz and 2000 Hz stimulations were markedly decreased, whereas the threshold to 5 Hz stimulations was significantly increased. Thus we found opposing effects on specific sensory fiber-mediated responses as a result of nerve injury in mice. These results also suggest that the EPF analysis is useful for the evaluation of plasticity in sensory functions in animal disease models.

Tài liệu tham khảo

Schwei MJ, Honore P, Rogers SD, Salak-Johnson JL, Finke MP, Ramnaraine ML, Clohisy DR, Mantyh PW: Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci 1999,19(24):10886–10897. Bennett GJ: An animal model of neuropathic pain: a review. Muscle Nerve 1993,16(10):1040–1048. 10.1002/mus.880161007 Ueda H: In vivo molecular signal transduction of peripheral mechanisms of pain. Jpn J Pharmacol 1999,79(3):263–268. 10.1254/jjp.79.263 Raja S, Meyer R, Ringkamp M, Campbell J: Peripheral neural mechanisms of nociception. In Textbook of Pain. 4th edition. Edited by: Wall RD, Melzack R. London: Churchill Livingstone; 1999:11–58. Ueda H: Molecular mechanisms of neuropathic pain-phenotypic switch and initiation mechanisms. Pharmacol Ther 2006,109(1–2):57–77. 10.1016/j.pharmthera.2005.06.003 Snider WD, McMahon SB: Tackling pain at the source: new ideas about nociceptors. Neuron 1998,20(4):629–632. 10.1016/S0896-6273(00)81003-X Djouhri L, Lawson SN: Abeta-fiber nociceptive primary afferent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals. Brain Res Brain Res Rev 2004,46(2):131–145. 10.1016/j.brainresrev.2004.07.015 Pitei DL, Watkins PJ, Stevens MJ, Edmonds ME: The value of the Neurometer in assessing diabetic neuropathy by measurement of the current perception threshold. Diabet Med 1994,11(9):872–876. Katims JJ: Neuroselective current perception threshold quantitative sensory test. Muscle Nerve 1997,20(11):1468–1469. 10.1002/(SICI)1097-4598(199711)20:11<1468::AID-MUS21>3.0.CO;2-X Lengyel C, Torok T, Varkonyi T, Kempler P, Rudas L: Baroreflex sensitivity and heart-rate variability in insulin-dependent diabetics with polyneuropathy. Lancet 1998,351(9113):1436–1437. 10.1016/S0140-6736(05)79485-X Masson EA, Boulton AJ: The Neurometer: validation and comparison with conventional tests for diabetic neuropathy. Diabet Med 1991, 8 Spec No: S63–66. Inoue M, Rashid MH, Kawashima T, Matsumoto M, Maeda T, Kishioka S, Ueda H: The algogenic-induced nociceptive flexion test in mice: studies on sensitivity of the test and stress on animals. Brain Res Bull 2003,60(3):275–281. 10.1016/S0361-9230(03)00045-5 Zimmermann M: Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983,16(2):109–110. 10.1016/0304-3959(83)90201-4 Hiura A, Ishizuka H: Changes in features of degenerating primary sensory neurons with time after capsaicin treatment. Acta Neuropathol (Berl) 1989,78(1):35–46. 10.1007/BF00687400 Inoue M, Kawashima T, Takeshima H, Calo G, Inoue A, Nakata Y, Ueda H: In vivo pain-inhibitory role of nociceptin/orphanin FQ in spinal cord. J Pharmacol Exp Ther 2003,305(2):495–501. 10.1124/jpet.102.046326 Rashid MH, Inoue M, Kondo S, Kawashima T, Bakoshi S, Ueda H: Novel expression of vanilloid receptor 1 on capsaicin-insensitive fibers accounts for the analgesic effect of capsaicin cream in neuropathic pain. J Pharmacol Exp Ther 2003,304(3):940–948. 10.1124/jpet.102.046250 Malmberg AB, Basbaum AI: Partial sciatic nerve injury in the mouse as a model of neuropathic pain: behavioral and neuroanatomical correlates. Pain 1998,76(1–2):215–222. 10.1016/S0304-3959(98)00045-1 Kiso T, Nagakura Y, Toya T, Matsumoto N, Tamura S, Ito H, Okada M, Yamaguchi T: Neurometer measurement of current stimulus threshold in rats. J Pharmacol Exp Ther 2001,297(1):352–356. Takasu MA, Dalva MB, Zigmond RE, Greenberg ME: Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 2002, 295: 491–495. 10.1126/science.1065983 Heinke B, Balzer E, Sandkühler J: Pre- and postsynaptic contributions of voltage-dependent Ca2+ channels to nociceptive transmission in rat spinal lamina I neurons. Eur J Neurosci 2004, 19: 103–111. 10.1046/j.1460-9568.2003.03083.x Koga K, Furue H, Rashid MH, Takaki A, Katafuchi T, Yoshimura M: Selective activation of primary afferent fibers evaluated by sine-wave electrical stimulation. Mol Pain 2005,1(1):13. 10.1186/1744-8069-1-13 Inoue M, Rashid MH, Fujita R, Contos JJ, Chun J, Ueda H: Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat Med 2004,10(7):712–718. 10.1038/nm1060 Bridges D, Thompson SW, Rice AS: Mechanisms of neuropathic pain. Br J Anaesth 2001,87(1):12–26. 10.1093/bja/87.1.12