Recent advances in enzyme promiscuity

Sustainable Chemical Processes - Tập 4 - Trang 1-7 - 2016
Rinkoo Devi Gupta1
1Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India

Tóm tắt

Enzyme promiscuity is defined as the capability of an enzyme to catalyze a reaction other than the reaction for which it has been specialized. Although, enzyme is known for its specificity, many enzymes are reported to be promiscuous in nature. However, the promiscuous function may not be relevant in physiological conditions. The reasons could be either very low level of catalytic activity or unavailability of the substrates in the cell. Hitherto, the enzyme promiscuity is of great importance because they are the starting point for the evolution of new functions in the nature. In addition, the promiscuous activities are utilized for the development of new catalytic functions by applying directed laboratory evolution and protein engineering techniques. The aim of this review is to provide recent developments on the understanding of the mechanism of catalytic promiscuity, evolvability of promiscuous functions and the applications of enzyme promiscuity in the designing of enhanced or new functional biocatalysts.

Tài liệu tham khảo

Khersonsky O, Tawfik DS (2010) Enzyme promiscuity: mechanistic and evolutionary perspective. Annu Rev Biochem 79:471–505 Copley SD (2014) An evolutionary perspective on protein moonlighting. Biochem Soc Trans 42(6):1684–1691 Gupta RD, Goldsmith M, Ashani Y, Simo Y, Mullokandov G, Bar H, Ben-David M, Leader H, Margalit R, Silman I, Sussman JL, Tawfik DS (2011) Directed evolution of hydrolases for prevention of G-type nerve agent intoxication. Nat Chem Biol 7(2):120–125 Jackson CJ, Foo JL, Tokuriki N, Afriat L, Carr PD, Kim HK, Schenk G, Tawfik DS, Ollis DL (2009) Conformational sampling, catalysis, and evolution of the bacterial phosphotriesterase. Proc Natl Acad Sci USA 106(51):21631–21636 Bigley AN, Mabanglo MF, Harvey SP, Raushel FM (2015) Variants of phosphotriesterase for the enhanced detoxification of the chemical warfare agent VR. Biochemistry 54(35):5502–5512 Nobeli I, Favia AD, Thornton JM (2009) Protein promiscuity and its implications for biotechnology. Nat Biotechnol 27:157–167 Copley SD (2009) Evolution of efficient pathways for degradation of anthropogenic chemicals. Nat Chem Biol 5(8):559–566 López-Iglesias M, Gotor-Fernández V (2015) Recent advances in biocatalytic promiscuity: hydrolase-catalyzed reactions for nonconventional transformations. Chem Rec 15(4):743–759 Baier F, Tokuriki N (2014) Connectivity between catalytic landscapes of the metallo-β-lactamase superfamily. J Mol Biol 426(13):2442–2456 Parera M, Martinez MA (2014) Strong epistatic interactions within a single protein. Mol Biol Evol 31(6):1546–1553 Copley SD (2015) An evolutionary biochemist’s perspective on promiscuity. Trends Biochem Sci 40(2):72–78 Atkins WM (2015) Biological messiness vs. biological genius: mechanistic aspects and roles of protein promiscuity. J Steroid Biochem Mol Biol 151:3–11 Arora B, Mukherjee J, Gupta MN (2014) Enzyme promiscuity: using the dark side of enzyme specificity in white Biotechnology. Sustainable Chemical Processes 2:25 Penning TM, Chen M, Jin Y (2015) Promiscuity and diversity in 3-ketosteroid reductases. J Steroid Biochem Mol Biol 151:93–101 Miao Y, Rahimi M, Geertsema EM, Poelarends GJ (2015) Recent developments in enzyme promiscuity for carbon-carbon bond-forming reactions. Curr Opin Chem Biol 25:115–123 Matange N, Podobnik M, Visweswariah SS (2015) Metallophosphoesterases: structural fidelity with functional promiscuity. Biochem J 467(2):201–216 Noda-García L, Juárez-Vázquez AL, Ávila-Arcos MC, Verduzco-Castro EA, Montero-Morán G, Gaytán P, Carrillo-Tripp M, Barona-Gómez F (2015) Insights into the evolution of enzyme substrate promiscuity after the discovery of (βα) isomerase evolutionary intermediates from a diverse metagenome. BMC Evol Biol 15:107 Huang H, Pandya C, Liu C, Al-Obaidi NF, Wang M, Zheng L, Toews Keating S, Aono M, Love JD, Evans B, Seidel RD, Hillerich BS, Garforth SJ, Almo SC, Dunaway-Mariano PS, Mariano D, Allen KN, Farelli JD (2015) Panoramic view of a superfamily of phosphatases through substrate profiling. Proc Natl Acad Sci USA 112(16):e1974 Mashiyama ST, Malabanan MM, Akiva E, Bhosle R, Branch MC, Hillerich B, Jagessar K, Kim J, Patskovsky Y, Seidel RD, Stead M, Toro R, Vetting MW, Almo SC, Armstrong RN, Babbitt PC (2014) Large-scale determination of sequence, structure, and function relationships in cytosolic glutathione transferases across the biosphere. PLoS Biol 12(4):e1001843 Pratap S, Katiki M, Gill P, Kumar P, Golemi-Kotra D (2015) Active-site plasticity is essential to carbapenem hydrolysis by OXA-58 Class D β-lactamase of Acinetobacter baumannii. Antimicrob Agents Chemother 60:75–86 Alcolombri U, Elias M, Tawfik DS (2011) Directed evolution of sulfotransferases and paraoxonases by ancestral libraries. J Mol Biol 411(4):837–853 Kraus ML, Grimm C, Seibel J (2015) Redesign of the active site of sucrose phosphorylase by a clash induced cascade of loop shifts. Chem Bio Chem. doi:10.1002/cbic.201500514 Afriat-Jurnou L, Jackson CJ, Tawfik DS (2012) Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling. Biochemistry 51(31):6047–6055 Yasutake Y, Yao M, Sakai N, Kirita T, Tanaka I (2004) Crystal structure of the Pyrococcus horikoshii isopropylmalate isomerase small subunit provides insight into the dual substrate specificity of the enzyme. J Mol Biol 344:325–333 Sevrioukova IF, Poulos TL (2013) Understanding the mechanism of cytochrome P450 3A4:recent advances and remaining problems. Dalton Trans 42(9):3116–3126 Yao J, Guo H, Chaiprasongsuk M, Zhao N, Chen F, Yang X, Guo H (2015) Substrate-assisted catalysis in the reaction catalyzed by salicylic acid binding protein 2 (SABP2), a potential mechanism of substrate discrimination for some promiscuous enzymes. Biochemistry 54(34):5366–5375 Baier F, Chen J, Solomonson M, Strynadka NC, Tokuriki N (2015) Distinct metal isoforms underlie promiscuous activity profiles of metalloenzymes. ACS Chem Biol 10(7):1684–1693 Marschner A, Klein CD (2015) Metal promiscuity and metal-dependent substrate preferences of Trypanosoma brucei methionine aminopeptidase 1. Biochimie 115:35–43 Pordea A (2015) Metal-binding promiscuity in artificial metalloenzyme design. Curr Opin Chem Biol 25:124–132 Rivera-Perez C, Nyati P, Noriega FG (2015) A corpora allata farnesyl diphosphate synthase in mosquitoes displaying a metal ion dependent substrate specificity. Insect Biochem Mol Biol 64:44–50 Kim Y, Cunningham MA, Mire J, Tesar C, Sacchettini J, Joachimiak A (2013) NDM-1, the ultimate promiscuous enzyme: substrate recognition and catalytic mechanism. FASEB J 27(5):1917–1927 Tokuriki N, Tawfik DS (2009) Protein dynamism and evolvability. Science 324:203–207 Kaltenbach M, Tokuriki N (2014) Dynamics and constraints of enzyme evolution. J Exp Zool B Mol Dev Evol 322(7):468–487 Amitai G, Gupta RD, Tawfik DS (2007) Laten evolutionary potentials under the neutral mutational drift of an enzyme. HFSP J 1(1):67–78 Gupta RD, Tawfik DS (2008) Directed enzyme evolution via small and effective neutral drift libraries. Nat Methods 5(11):939–942 Miles ZD, Roberts SA, McCarty RM, Bandarian V (2014) Biochemical and structural studies of 6-carboxy-5, 6, 7, 8-tetrahydropterin synthase reveal the molecular basis of catalytic promiscuity within the tunnel-fold superfamily. J Biol Chem 289(34):23641–23652 Luo XJ, Kong XD, Zhao J, Chen Q, Zhou J, Xu JH (2014) Switching a newly discovered lactonase into an efficient and thermostable phosphotriesterase by simple double mutations His250Ile/Ile263Trp. Biotechnol Bioeng 111(10):1920–1930 Khanal A, Yu McLoughlin S, Kershner JP, Copley SD (2015) Differential effects of a mutation on the normal and promiscuous activities of orthologs: implications for natural and directed evolution. Mol Biol Evol 32(1):100–108 de Visser JA, Krug J (2014) Empirical fitness landscapes and the predictability of evolution. Nat Rev Genet 15(7):480–490 Harms MJ, Thornton JW (2013) Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat Rev Genet 14(8):559–571 Renata H, Wang ZJ, Arnold FH (2015) Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew Chem Int Ed Engl 54(11):3351–3367 Colin PY, Kintses B, Gielen F, Miton CM, Fischer G, Mohamed MF, Hyvönen M, Morgavi DP, Janssen DB, Hollfelder F (2015) Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat Commun 6:10008 Meier MM, Rajendran C, Malisi C, Fox NG, Xu C, Schlee S, Barondeau DP, Höcker B, Sterner R, Raushel FM (2013) Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template. J Am Chem Soc 135(31):11670–11677 Bigley AN, Xu C, Henderson TJ, Harvey SP, Raushel FM (2013) Enzymatic neutralization of the chemical warfare agent VX: evolution of phosphotriesterase for phosphorothiolate hydrolysis. J Am Chem Soc 135(28):10426–10432 Naqvi T, Warden AC, French N, Sugrue E, Carr PD, Jackson CJ, Scott C (2014) A 5000-fold increase in the specificity of a bacterial phosphotriesterase for malathion through combinatorial active site mutagenesis. PLoS One. 9(4):e94177 Dorr BM, Ham HO, An C, Chaikof EL, Liu DR (2014) Reprogramming the specificity of sortase enzymes. Proc Natl Acad Sci USA 111(37):13343–13348 Sharma UK, Sharma N, Kumar R, Kumar R, Sinha AK (2009) Biocatalytic promiscuity of lipase in chemoselective oxidation of aryl alcohols/acetates: a unique synergism of CAL-B and [hmim] Br for the metal-free H2O2 activation. Org Lett 11(21):4846–4848 Bordes I, Recatalá J, Świderek K, Moliner V (2015) Is promiscuous CALB a good scaffold for designing new epoxidases? Molecules 20(10):17789–17806 Leščić Ašler I, Ivić N, Kovačić F, Schell S, Knorr J, Krauss U, Wilhelm S, Kojić-Prodić B, Jaeger KE (2010) Probing enzyme promiscuity of SGNH hydrolases. Chem Bio Chem 11(15):2158–2167 Li R, Perez B, Jian H, Jensen MM, Gao R, Dong M, Glasius M, Guo Z (2015) Characterization and mechanism insight of accelerated catalytic promiscuity of Sulfolobus tokodaii (ST0779) peptidase for aldol addition reaction. Appl Microbiol Biotechnol 99:9625–9634 Cai Y, Bhuiya MW, Shanklin J, Liu CJ (2015) Engineering a Monolignol 4-O-methyltransferase with High Selectivity for the Condensed Lignin Precursor Coniferyl Alchohol. J Biol Chem. 290:26715–26724 Koval’ T, Lipovová P, Podzimek T, Matoušek J, Dušková J, Skálová T, Stěpánková A, Hašek J, Dohnálek J (2013) Plant multifunctional nuclease TBN1 with unexpected phospholipase activity: structural study and reaction-mechanism analysis. Acta Crystallogr D Biol Crystallogr 69(Pt 2):213–226 Norrgård MA, Mannervik B (2011) Engineering GST M2-2 for high activity with indene 1,2-oxide and indication of an H-site residue sustaining catalytic promiscuity. J Mol Biol 412(1):111–120