Collision-induced dissociation of Fe+n (n=2–10) with Xe: Ionic and neutral iron binding energies

Journal of Chemical Physics - Tập 90 Số 10 - Trang 5466-5485 - 1989
S. K. Loh1, David Hales1, Lian Li1, P. B. Armentrout1
1Department of Chemistry, University of California, Berkeley, California 94720

Tóm tắt

Cross sections for collision-induced dissociation (CID) of Fe+n with Xe, 2≤n≤10, are presented. Experiments were performed on a newly constructed guided ion beam mass spectrometer, the design and capabilities of which are described in detail. The single mechanism for dissociation of iron cluster ions is sequential loss of iron atoms with increasing collision energies. There is no evidence for fission to molecular neutral products. The cross section threshold energy dependences are analyzed to give the bond dissociation energies (BDEs), D0(Fe+n−1–Fe). Data analysis employs an empirical model that incorporates RRKM theory to account for inefficient dissociation on the time scale of the experiment. Results show that Fe+6 has the strongest BDE, D0(Fe+5–Fe) =3.44±0.18 eV, while Fe+3 is the most weakly bound, D0(Fe+2–Fe) =1.64±0.15 eV. Neutral cluster BDEs are derived from ionic binding energies and known ionization potentials. Branching ratios and other cross section features are also discussed with respect to cluster size.

Từ khóa


Tài liệu tham khảo

1981, J. Chem. Phys., 74, 6511, 10.1063/1.440991

1982, J. Chem. Phys., 76, 2165, 10.1063/1.443314

1986, J. Chem. Phys., 88, 4497

1983, J. Chem. Phys., 78, 2866, 10.1063/1.445273

1986, Chem. Rev., 86, 1049, 10.1021/cr00076a005

1988, J. Chem. Phys., 88, 1041, 10.1063/1.454272

1986, J. Chem. Phys., 85, 7211, 10.1063/1.451357

1988, J. Chem. Phys., 88, 1828, 10.1063/1.454107

1988, J. Chem. Phys., 88, 3780, 10.1063/1.453876

1982, J. Chem. Phys., 77, 2490, 10.1063/1.444120

1981, Phys. Rev., 24, 2368, 10.1103/PhysRevB.24.2368

1986, J. Chem. Phys., 85, 51, 10.1063/1.451630

1980, J. Chem. Phys., 73, 4917, 10.1063/1.440021

1975, Chem. Phys. Lett., 35, 78, 10.1016/0009-2614(75)85592-8

1969, J. Phys. Chem., 73, 2450, 10.1021/j100727a068

1988, J. Phys. Chem., 92, 4009, 10.1021/j100325a001

1976, J. Chem. Phys., 64, 4046, 10.1063/1.432013

1988, J. Chem. Phys., 88, 6419, 10.1063/1.454428

1981, J. Chem. Phys., 81, 3846

1985, J. Chem. Phys., 82, 5431

1985, J. Chem. Phys., 83, 2293, 10.1063/1.449321

1988, J. Chem. Phys., 88, 6605, 10.1063/1.454448

1988, J. Chem. Phys., 88, 1622, 10.1063/1.454141

1986, J. Phys. Chem., 90, 525, 10.1021/j100276a001

1984, Phys. Rev. Lett., 52, 2141, 10.1103/PhysRevLett.52.2141

1976, J. Chem. Phys., 65, 4445, 10.1063/1.432978

1983, J. Phys. Chem., 87, 3593, 10.1021/j100242a006

1984, J. Am. Chem. Soc., 106, 1161, 10.1021/ja00316a082

1987, J. Chem. Phys., 87, 260, 10.1063/1.453623

1987, J. Chem. Phys., 86, 3876, 10.1063/1.451948

1985, Phys. Rev. Lett., 54, 2246, 10.1103/PhysRevLett.54.2246

1987, J. Am. Chem. Soc., 91, 5161

1986, Chem. Phys. Lett., 129, 527, 10.1016/0009-2614(86)80394-3

1986, J. Chem. Phys., 84, 4074, 10.1063/1.450069

1985, Rev. Sci. Instrum., 56, 2123, 10.1063/1.1138381

1984, J. Phys. Chem., 88, 4466, 10.1021/j150664a004

1977, J. Chem. Phys., 66, 3965, 10.1063/1.434448

1985, J. Chem. Phys., 83, 4849, 10.1063/1.449746

1985, J. Chem. Phys., 83, 166, 10.1063/1.449799

1962, Rev. Sci. Instrum., 33, 823, 10.1063/1.1717980

1976, Rev. Sci. Instrum., 47, 15, 10.1063/1.1134474

1974, Chem. Phys., 4, 417, 10.1016/0301-0104(74)85008-1

1979, J. Chem. Phys., 70, 4017, 10.1063/1.438022

1959, Rev. Sci. Instrum., 31, 264

1958, J. Chem. Phys., 29, 292

1986, J. Phys. Chem., 90, 5135, 10.1021/j100412a049

1973, J. Chem. Phys., 58, 5489, 10.1063/1.1679171

1973, J. Chem. Phys., 58, 5502, 10.1063/1.1679172

1977, J. Chem. Phys., 67, 3014, 10.1063/1.435256

1987, J. Am. Chem. Soc., 109, 3537, 10.1021/ja00246a008

1971, J. Chem. Phys., 55, 2746, 10.1063/1.1676489

1986, J. Am. Chem. Soc., 108, 1806, 10.1021/ja00268a017

1987, J. Am. Chem. Soc., 109, 3549, 10.1021/ja00246a010

1987, J. Am. Chem. Soc., 109, 78, 10.1021/ja00235a013

1987, J. Phys. Chem., 91, 2037, 10.1021/j100292a012

1964, J. Chem. Phys., 41, 2174, 10.1063/1.1726222

1971, Chem. Phys. Lett., 11, 552, 10.1016/0009-2614(71)87002-1

1979, J. Phys. Chem., 83, 900, 10.1021/j100471a004

1986, J. Chem. Phys., 84, 3078, 10.1063/1.450289

1988, J. Chem. Phys., 89, 780, 10.1063/1.455201

1987, J. Chem. Phys., 87, 5728, 10.1063/1.453547

1982, Phys. Rev. B, 25, 4412, 10.1103/PhysRevB.25.4412

1985, J. Phys. Chem. Ref. Data, 14, 1179

1977, J. Phys. Chem., 81, 994, 10.1021/j100525a014

1985, J. Phys. Chem. Ref. Data, 14, 407

1987, J. Phys. Chem., 91, 5777, 10.1021/j100306a051

1987, J. Am. Chem. Soc., 109, 3537, 10.1021/ja00246a008