Large remnant polarization and magnetic field induced destruction of cycloidal spin structure in Bi1−xLaxFeO3 (0 ≤ x ≤ 0.2)

Journal of Applied Physics - Tập 113 Số 21 - 2013
Lihua Yin1, Jie Yang1, B.C. Zhao1, Yu Liu1, S. G. Tan1, Xianwu Tang1, J. M. Dai1, Wenhai Song1, Yuan Sun2,1
1Key Laboratory of Materials Physics, Institute of Solid State Physics 1 , Hefei 230031, People’s Republic of China
2High Magnetic Field Laboratory, Chinese Academy of Sciences 2 , Hefei 230031, People’s Republic of China

Tóm tắt

We prepared a series of Bi1−xLaxFeO3 (0 ≤ x ≤ 0.2) ceramics with a sol-gel method and find that both the magnetization and dielectric constant show an abrupt anomaly near a critical field Hc, which is attributed to the destruction of the cycloidal antiferromagnetic spin structure. The critical field Hc decreases substantially from ∼20 T for the x = 0 sample [Y. F. Popov et al., JETP Lett. 57, 69 (1993)] to ∼2.8 T for the x = 0.17 sample and finally to 0 T for the x = 0.2 sample at room temperature (RT). It is also found that Hc increases with decreasing temperature. The variation of Hc with La substitution and temperature can be ascribed to the change in the magnetic anisotropy and isotropic superexchange interaction, respectively. We have also discussed the magnetodielectric effects in these samples in terms of the Ginzburg-Landau theory and the spin-phonon model. Moreover, increasing the doping level of La to 0.15 greatly improves the RT leakage-current and ferroelectric (FE) properties. A RT square-shaped FE hysteresis loop with remnant polarization (2Pr) as high as ∼64 μC/cm2 is obtained for the x = 0.15 sample. These results may be important for potential applications in BiFeO3-based magnetoelectric devices.

Từ khóa


Tài liệu tham khảo

2007, Nature Mater., 6, 21, 10.1038/nmat1805

2008, J. Phys.: Condens. Matter, 20, 434201, 10.1088/0953-8984/20/43/434201

2005, J. Phys.: Condens. Matter, 17, R803, 10.1088/0953-8984/17/30/R01

2006, Nature (London), 442, 759, 10.1038/nature05023

1970, Solid State Commun., 8, 1073, 10.1016/0038-1098(70)90262-0

1982, J. Phys. C, 15, 4835, 10.1088/0022-3719/15/23/020

2008, Phys. Rev. Lett., 100, 227602, 10.1103/PhysRevLett.100.227602

1993, JETP Lett., 57, 69

1985, Jpn. J. Appl. Phys., 24, 1051, 10.7567/JJAPS.24S2.1051

2008, Appl. Phys. Lett., 93, 182909, 10.1063/1.3020296

2009, Phys. Rev. B, 80, 134417, 10.1103/PhysRevB.80.134417

2004, Phys. Rev. B, 69, 064114, 10.1103/PhysRevB.69.064114

2005, Appl. Phys. Lett., 86, 032511, 10.1063/1.1851612

2005, Phys. Rev. B, 71, 014113, 10.1103/PhysRevB.71.014113

2005, Phys. Rev. B, 71, 224103, 10.1103/PhysRevB.71.224103

2007, Phys. Rev. B, 76, 024116, 10.1103/PhysRevB.76.024116

2007, Appl. Phys. Lett., 91, 022907, 10.1063/1.2753390

2011, Appl. Phys. Lett., 98, 192901, 10.1063/1.3589814

2006, J. Appl. Phys., 100, 114108, 10.1063/1.2390625

2006, J. Appl. Phys., 100, 024109, 10.1063/1.2220642

2007, J. Appl. Phys., 101, 064101, 10.1063/1.2433709

2006, Adv. Mater., 18, 1445, 10.1002/adma.200502622

2004, Appl. Phys. Lett., 84, 1731, 10.1063/1.1667612

2012, J. Solid State Chem., 194, 194, 10.1016/j.jssc.2012.05.007

2012, Phys. Rev. B, 86, 184422, 10.1103/PhysRevB.86.184422

2011, Phys. Rev. B, 83, 054109, 10.1103/PhysRevB.83.054109

2006, Appl. Phys. Lett., 88, 102902, 10.1063/1.2177543

2006, Phase Trans., 79, 1019, 10.1080/01411590601067235

1950, Rep. Prog. Phys., 13, 83, 10.1088/0034-4885/13/1/304

2001, Phys. Rev. B, 64, 144430, 10.1103/PhysRevB.64.144430

2012, Appl. Phys. Lett., 100, 242413, 10.1063/1.4729555

2007, Appl. Phys. Lett., 91, 072506, 10.1063/1.2771041

2003, Phys. Rev. B, 67, 180401, 10.1103/PhysRevB.67.180401

2004, Phys. Rev. B, 70, 132101, 10.1103/PhysRevB.70.132101

2003, Phys. Rev. Lett., 91, 257208, 10.1103/PhysRevLett.91.257208

1976, Phys. Rev. B, 14, 5073, 10.1103/PhysRevB.14.5073

2006, J. Am. Ceram. Soc., 89, 3136, 10.1111/j.1551-2916.2006.01186.x