MicroRNA signature of the human developing pancreas

Samuel Rosero1, Valia Bravo-Egaña1, Zhijie Jiang2, Sawsan Khuri2, Nicholas F. Tsinoremas2, Dagmar Klein1, Eduardo Sabates1, Mayrin Correa-Medina1, Camillo Ricordi1, Juan Domínguez‐Bendala1, Juan Díez1, Ricardo L. Pastori1
1Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
2Center for Computational Science, University of Miami, Miami, FL, 33136, USA

Tóm tắt

Abstract Background MicroRNAs are non-coding RNAs that regulate gene expression including differentiation and development by either inhibiting translation or inducing target degradation. The aim of this study is to determine the microRNA expression signature during human pancreatic development and to identify potential microRNA gene targets calculating correlations between the signature microRNAs and their corresponding mRNA targets, predicted by bioinformatics, in genome-wide RNA microarray study. Results The microRNA signature of human fetal pancreatic samples 10-22 weeks of gestational age (wga), was obtained by PCR-based high throughput screening with Taqman Low Density Arrays. This method led to identification of 212 microRNAs. The microRNAs were classified in 3 groups: Group number I contains 4 microRNAs with the increasing profile; II, 35 microRNAs with decreasing profile and III with 173 microRNAs, which remain unchanged. We calculated Pearson correlations between the expression profile of microRNAs and target mRNAs, predicted by TargetScan 5.1 and miRBase altgorithms, using genome-wide mRNA expression data. Group I correlated with the decreasing expression of 142 target mRNAs and Group II with the increasing expression of 876 target mRNAs. Most microRNAs correlate with multiple targets, just as mRNAs are targeted by multiple microRNAs. Among the identified targets are the genes and transcription factors known to play an essential role in pancreatic development. Conclusions We have determined specific groups of microRNAs in human fetal pancreas that change the degree of their expression throughout the development. A negative correlative analysis suggests an intertwined network of microRNAs and mRNAs collaborating with each other. This study provides information leading to potential two-way level of combinatorial control regulating gene expression through microRNAs targeting multiple mRNAs and, conversely, target mRNAs regulated in parallel by other microRNAs as well. This study may further the understanding of gene expression regulation in the human developing pancreas.

Từ khóa


Tài liệu tham khảo

Ambros V: microRNAs: tiny regulators with great potential. Cell. 2001, 107 (7): 823-826. 10.1016/S0092-8674(01)00616-X.

Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116 (2): 281-297. 10.1016/S0092-8674(04)00045-5.

Pasquinelli AE: MicroRNAs: deviants no longer. Trends Genet. 2002, 18 (4): 171-173. 10.1016/S0168-9525(01)02624-5.

Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R: MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA. 2008, 105 (5): 1608-1613. 10.1073/pnas.0707594105.

Vasudevan S, Tong Y, Steitz JA: Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007, 318 (5858): 1931-1934. 10.1126/science.1149460.

Griffiths-Jones S: The microRNA Registry. Nucleic Acids Res. 2004, D109-111. 10.1093/nar/gkh023. 32 Database

Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ: Dicer is essential for mouse development. Nat Genet. 2003, 35 (3): 215-217. 10.1038/ng1253.

Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ: The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci USA. 2005, 102 (31): 10898-10903. 10.1073/pnas.0504834102.

Harris KS, Zhang Z, McManus MT, Harfe BD, Sun X: Dicer function is essential for lung epithelium morphogenesis. Proc Natl Acad Sci USA. 2006, 103 (7): 2208-2213. 10.1073/pnas.0510839103.

O'Rourke JR, Georges SA, Seay HR, Tapscott SJ, McManus MT, Goldhamer DJ, Swanson MS, Harfe BD: Essential role for Dicer during skeletal muscle development. Dev Biol. 2007, 311 (2): 359-368. 10.1016/j.ydbio.2007.08.032.

Yi R, O'Carroll D, Pasolli HA, Zhang Z, Dietrich FS, Tarakhovsky A, Fuchs E: Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet. 2006, 38 (3): 356-362. 10.1038/ng1744.

Kosik KS: The neuronal microRNA system. Nat Rev Neurosci. 2006, 7 (12): 911-920. 10.1038/nrn2037.

Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS: MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes. 2007, 56 (12): 2938-2945. 10.2337/db07-0175.

Cordes KR, Srivastava D: MicroRNA regulation of cardiovascular development. Circ Res. 2009, 104 (6): 724-732. 10.1161/CIRCRESAHA.108.192872.

Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P: A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004, 432 (7014): 226-230. 10.1038/nature03076.

Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH: Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol. 2007, 5 (8): e203-10.1371/journal.pbio.0050203.

Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, Zavolan M, Stoffel M: miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA. 2009, 106 (14): 5813-5818. 10.1073/pnas.0810550106.

Correa-Medina M, Bravo-Egana V, Rosero S, Ricordi C, Edlund H, Diez J, Pastori RL: MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns. 2009, 9 (4): 193-199. 10.1016/j.gep.2008.12.003.

Joglekar MV, Joglekar VM, Hardikar AA: Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns. 2009, 9 (2): 109-113. 10.1016/j.gep.2008.10.001.

Friedman JR, Kaestner KH: The Foxa family of transcription factors in development and metabolism. Cell Mol Life Sci. 2006, 63 (19-20): 2317-2328. 10.1007/s00018-006-6095-6.

Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, Scharfmann R, Rutter GA, Van Obberghen E: MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem. 2007, 282 (27): 19575-19588. 10.1074/jbc.M611841200.

Joglekar MV, Parekh VS, Mehta S, Bhonde RR, Hardikar AA: MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol. 2007, 311 (2): 603-612. 10.1016/j.ydbio.2007.09.008.

Edlund H: Factors controlling pancreatic cell differentiation and function. Diabetologia. 2001, 44 (9): 1071-1079. 10.1007/s001250100623.

Edlund H: Pancreatic organogenesis--developmental mechanisms and implications for therapy. Nat Rev Genet. 2002, 3 (7): 524-532. 10.1038/nrg841.

Lyttle BM, Li J, Krishnamurthy M, Fellows F, Wheeler MB, Goodyer CG, Wang R: Transcription factor expression in the developing human fetal endocrine pancreas. Diabetologia. 2008, 51 (7): 1169-1180. 10.1007/s00125-008-1006-z.

Piper K, Brickwood S, Turnpenny LW, Cameron IT, Ball SG, Wilson DI, Hanley NA: Beta cell differentiation during early human pancreas development. J Endocrinol. 2004, 181 (1): 11-23. 10.1677/joe.0.1810011.

Polak M, Bouchareb-Banaei L, Scharfmann R, Czernichow P: Early pattern of differentiation in the human pancreas. Diabetes. 2000, 49 (2): 225-232. 10.2337/diabetes.49.2.225.

Sarkar SA, Kobberup S, Wong R, Lopez AD, Quayum N, Still T, Kutchma A, Jensen JN, Gianani R, Beattie GM: Global gene expression profiling and histochemical analysis of the developing human fetal pancreas. Diabetologia. 2008, 51 (2): 285-297. 10.1007/s00125-007-0880-0.

Jeon J, Correa-Medina M, Ricordi C, Edlund H, Diez JA: Endocrine cell clustering during human pancreas development. J Histochem Cytochem. 2009, 57 (9): 811-824. 10.1369/jhc.2009.953307.

Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007, 27 (1): 91-105. 10.1016/j.molcel.2007.06.017.

Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005, 433 (7027): 769-773. 10.1038/nature03315.

Rajewsky N: microRNA target predictions in animals. Nat Genet. 2006, 38 (Suppl): S8-13. 10.1038/ng1798.

Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006, D140-144. 10.1093/nar/gkj112. 34 Database

Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120 (1): 15-20. 10.1016/j.cell.2004.12.035.

Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I: MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008, 455 (7216): 1124-1128. 10.1038/nature07299.

Zhou JLS, Melfi V, Verducci J: Composite microrna target predictions and comparisons of several prediction algorithms. Mathematical Biosciences Institute, The Ohio State University. Technical Report 51. 2006

Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, Hughes TR, Blencowe BJ, Frey BJ, Morris QD: Using expression profiling data to identify human microRNA targets. Nat Methods. 2007, 4 (12): 1045-1049. 10.1038/nmeth1130.

Wang YP, Li KB: Correlation of expression profiles between microRNAs and mRNA targets using NCI-60 data. BMC Genomics. 2009, 10: 218-10.1186/1471-2164-10-218.

Oliver-Krasinski JM, Stoffers DA: On the origin of the beta cell. Genes Dev. 2008, 22 (15): 1998-2021. 10.1101/gad.1670808.

Chu K, Nemoz-Gaillard E, Tsai MJ: BETA2 and pancreatic islet development. Recent Prog Horm Res. 2001, 56: 23-46. 10.1210/rp.56.1.23.

Zhang C, Ye X, Zhang H, Ding M, Deng H: GATA factors induce mouse embryonic stem cell differentiation toward extraembryonic endoderm. Stem Cells Dev. 2007, 16 (4): 605-613. 10.1089/scd.2006.0077.

Artner I, Blanchi B, Raum JC, Guo M, Kaneko T, Cordes S, Sieweke M, Stein R: MafB is required for islet beta cell maturation. Proc Natl Acad Sci USA. 2007, 104 (10): 3853-3858. 10.1073/pnas.0700013104.

Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262.

Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998, 95 (25): 14863-14868. 10.1073/pnas.95.25.14863.