Optic flow regulation: the key to aircraft automatic guidance
Tài liệu tham khảo
Alestram, 1990
O. Amidi, T. Kanade, J.R. Miller, Vision-based autonomous helicopter research at Carnegie Mellon Robotics Institute 1991–1997, in: Proceedings of the American Helicopter Society Int. Conf. Gifu, Japan, 1998.
C. Blanes, Appareil visuel élémentaire pour la navigation à vue d’un robot mobile autonome, Master Thesis in Neurosciences (“DEA” in French), Neurosciences, Univ. Aix-Marseille II, 1986.
C. Blanes, Guidage visuel d’un robot mobile autonome d’inspiration bionique, PhD Thesis, Spécialité: Signal, Image, Parole, Institut National Polytechnique de Grenoble, 1991.
G.L. Barrows, C. Neely, K.T. Miller, Optic flow sensors for MAV navigation, in: Fixed and flapping wing aerodynamics for Micro Air Vehicle applications, Progress in Astronautics and Aeronautics, AIAA, 2001. Vol. 195, 557–574.
Chahl, 2004, Landing Strategies in Honeybees and Applications to Uninhabited Airborne Vehicles, Int. J. Robot. Res., 23, 101, 10.1177/0278364904041320
Chahl, 2003, Bioinspired engineering of exploration systems: a horizon sensor/attitude reference system based on the dragonfly ocelli for Mars Exploration Applications, J. Robot. Sys., 20, 35, 10.1002/rob.10068
Collett, 1993, Visual stabilization in arthropods, 239
V. Creuze, B. Jouvencel, Avoidance of underwater cliffs for autonomous underwater vehicles, in: Proceedings of the IEEE Conf. on Intelligent Robots and Systems (IROS), Lausanne, Switzerland, 2002, pp. 793–798.
David, 1978, The relationship between body angle and flight speed in free-flying Drosophila, Physiol. Entomol., 3, 191, 10.1111/j.1365-3032.1978.tb00148.x
M. Dunbabin, P. Corke, G. Buskey, Low-cost vision-based AUV Guidance system for reef navigation, in: Proceeding of IEEE International Conference on Robotics and Automation (ICRA 2004), New Orleans, USA, pp. 7–12.
N. Franceschini, C. Blanes, L. Oufar, Passive, non-contact optical velocity sensor (in French), Dossier technique ANVAR/DVAR N°51549, Paris, 1986.
Franceschini, 1992, From insect vision to robot vision, Philos. Trans. Royal Soc. Lond. Ser. B, 337, 283, 10.1098/rstb.1992.0106
Franceschini, 1989, Directionally selective motion detection by insect neurons, 360
S. Furst, S. Werner, D. Dickmanns, S. Werner, Landmark navigation and autonomous landing approach with obstacle detection for aircraft, in: Proceedings of SPIE AeroSense ’97 Conf., Vol. 3088, Orlando FL, 1997, pp. 94–105.
W.E. Green, P.Y. Oh, G. Barrows, Flying insect inspired vision for autonomous aerial robot maneuvers in near-earth environments, in: Proceeding of IEEE International Conference of Robotics and Automation (ICRA), New Orleans, 2004, pp. 2347–2352.
Harrison, 1999, A robust analog VLSI motion sensor based on the visual system of the fly, Autonomous Robots, 7, 211, 10.1023/A:1008916202887
Hausen, 1989, Neural mechanisms of visual course-control in insects, 391
Ichikawa, 2001, Flying robot with biologically inspired vision, J. Robot. Mechatron., 13, 621, 10.20965/jrm.2001.p0621
B. Kadmiry, P. Bergsten, Pr. D. Driankov, Autonomous helicopter using fuzzy-gain scheduling, in: Proceedings of the IEEE Int. Conf. on Robotic and Automation (ICRA 2001), vol. 3, Seoul, Korea, 2001, pp. 2980–2985.
Kennedy, 1939, The visual response of flying mosquitoes, Proc. Royal Soc. Lond. Ser. A, 109, 221
Kennedy, 1951, The migration of the desert locust (Schistocerca gregaria Forsk.), Philos. Trans. Royal Soc. Lond. Ser. B, 235, 163, 10.1098/rstb.1951.0003
Kramer, 1997, Pulse-based analog VLSI velocity sensors, IEEE Trans. Circuits Sys. II, 44, 86, 10.1109/82.554431
T. Kubota, T. Hashimoto, J. Kawaguchi, Image processing for asteroid exploration mission MUSES-C, in: Proceedings of the IEEE 11th Int. Conf. on Advanced Robotics (ICAR), Coimbra, Portugal, 2003, pp. 1221–1226.
Mura, 1994, Visual control of altitude and speed in a flying agent, 91
T. Netter, N. Franceschini, Neuromorphic optical flow sensing for nap-of-the-earth flight, in: D.W. Gage, H.M. Choset (Eds.), Proceedings of the SPIE Conf. on Mobile Robots XIV, Bellingham, USA, 1999. SPIE vol. 3838, pp. 208–216.
T. Netter, N. Franceschini, A robotic aircraft that follows terrain using a neuromorphic eye, in: Proceedings of the IEEE Conf. on Intelligent Robots and Systems (IROS), Lausanne, Switzerland, 2002, pp. 129–134.
T.R. Neumann, H. Bülthoff, Insect inspired visual control of translatory flight, in: Proceedings of the ECAL 2001. Springer, Berlin, 2001, pp. 627–636.
G. Paar, W. Pölzleitner, Descent and landing phase: vision based robust spacecraft motion estimation and elevation modeling, in: CNES (Eds.), Missions, Technologies and Design of Planetary Mobile Vehicles, Cépaduès-éditions, Toulouse, France, 1992, pp. 259–272.
J.-M. Pichon, C. Blanes, N. Franceschini, Visual guidance of a mobile robot equipped with a network of self-motion sensors, in: W.J. Wolfe, W.H., Chun (Eds.), Proceedings of the SPIE Conf. on Mobile Robots IV, Bellingham, USA, 1989. SPIE vol. 1195, pp. 44–53.
Reichardt, 1969, Movement perception in insects, 465
J.M. Roberts, P.I. Corke, G. Buskey, Low-cost flight control system for a small autonomous helicopter, in: Proceedings of the 2002 Australasian Conference of Robotics and Automation, 2002, pp. 71–76.
F. Ruffier, N. Franceschini, OCTAVE, système de contrôle bio-inspiré de l’altitude d’un micro-aéronef, in: Actes des 1ères journées du Réseau Thématique Pluridisciplinaire Micro-robotique, CNRS, Rennes, France, November 2002.
F. Ruffier, N. Franceschini, OCTAVE, a bioinspired visuo-motor control system for the guidance of Micro-Air Vehicles, in: A. Rodriguez-Vazquez, D. Abbott, R. Carmona (Eds.), Bioengineered and Bioinspired Systems, Bellingham, USA, May 2003. SPIE vol. 5119, pp. 1–12.
F. Ruffier, N. Franceschini, Visually guided micro-aerial vehicle : automatic take off, terrain following, landing and wind reaction, in: Proceeding of the IEEE International Conference on Robotics and Automation (ICRA 2004), New Orleans, USA, April 2004, pp. 2339–2346.
F. Ruffier, S. Viollet, S. Amic, N. Franceschini, Bio-inspired optical flow circuits for the visual guidance of micro-air vehicles, in: Proceedings of the IEEE Int. Symposium on Circuits and Systems (ISCAS), vol. III, Bangkok, Thailand, May 2003, pp. 846–849.
Ruffier, 2004, Visual control of two aerial mini-robots by insect-based autopilots, Advanced Robotics, 18, 771, 10.1163/1568553041738086
K. Schutte, H. Sahli, D. Schrottmayer, M. Eisl, F.J. Varas, M. Bajic, M. Uppsall, E. den Breejen, ARC: a camcopter based mine field detection system, in: Proceedings of the Fifth International Airborne Remote Sensing Conference, San Francisco, 2001.
C.S. Sharp, O. Shakernia, S.S. Sastry, A vision system for landing an unmanned aerial vehicle, in: Proceedings of the IEEE Int. Conf. on Robotics and Automation (ICRA), Seoul, Korea, 2001, pp. 1720–1727.
Srinivasan, 2000, How honeybees make grazing landings on flat surfaces, Biological Cybernetics, 83, 171, 10.1007/s004220000162
Srinivasan, 1996, Honeybee navigation en route to the goal: visual flight control and odometry, J. Exp. Biol., 199, 237, 10.1242/jeb.199.1.237
Tennekes, 1973, A model for the dynamics of the inversion above a convective boundary layer, J. Atmos. Sci., 30, 558, 10.1175/1520-0469(1973)030<0558:AMFTDO>2.0.CO;2
S. Viollet, N. Franceschini, Super-accurate visual control of an aerial minirobot, in: U. Rückert, J. Sitte, U. Witkowski (Eds.), Proceedings of the Autonomous Minirobots for Research, Edutainment AMIRE, Paderborn, Germany, 2001, pp. 215–224.
S. Viollet, N. Franceschini, A miniature biomimetic gaze control system, in: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2004), New Orleans, USA, pp. 504–510.
W.C. Wu, L. Schenato, R. J. Wood, R.S. Fearing, biomimetic sensor suite for flight control of a micromechanical flying insect: design and experimental results, in: Proceedings of the IEEE Int. Conf. on Robotics and Automation (ICRA), Taipei, Taiwan, 2003, pp. 1146–1151.