Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions

Microbiology (United Kingdom) - Tập 153 Số 10 - Trang 3527-3537 - 2007
Alexander Kristian Apel1,2, Alberto Sola‐Landa1, Antonio Rodríguez‐García1, Juan F. Martı́n1,2
1Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real 1, 24006 León, Spain
2Área de Microbiología, Fac. CC. Biológicas y Ambientales, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bendtsen, 2005, Prediction of twin-arginine signal peptides, BMC Bioinformatics, 6, 167, 10.1186/1471-2105-6-167

Bentley, 2002, Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2, Nature, 417, 141, 10.1038/417141a

Berks, 1996, A common export pathway for proteins binding complex redox cofactors?, Mol Microbiol, 22, 393, 10.1046/j.1365-2958.1996.00114.x

Bourn, 1995, Computer assisted identification and classification of streptomycete promoters, Nucleic Acids Res, 23, 3696, 10.1093/nar/23.18.3696

Clayton, 1990, Streptomyces promoter-probe plasmids that utilise the xylE gene of Pseudomonas putida, Nucleic Acids Res, 18, 1077, 10.1093/nar/18.4.1077

Demain, 2000, The natural functions of secondary metabolites, Adv Biochem Eng Biotechnol, 69, 1

Fernández-Ábalos, 1992, Cloning and nucleotide sequence of celA1 , and endo- β -1,4-glucanase-encoding gene from Streptomyces halstedii JM8, J Bacteriol, 174, 6368, 10.1128/JB.174.20.6368-6376.1992

García-González, 1991, Characterization, expression in Streptomyces lividans , and processing of the amylase of Streptomyces griseus IMRU 3570: two different amylases are derived from the same gene by an intracellular processing mechanism, J Bacteriol, 173, 2451, 10.1128/JB.173.8.2451-2458.1991

Geng, 1999, A 20-kDa domain is required for phosphatidic acid-induced allosteric activation of phospholipase D from Streptomyces chromofuscus, Biochim Biophys Acta, 1430, 234, 10.1016/S0167-4838(99)00005-9

Ghorbel, 2006, Transcriptional studies and regulatory interactions between the phoR - phoP operon and the phoU , mtpA , and ppk genes of Streptomyces lividans TK24, J Bacteriol, 188, 677, 10.1128/JB.188.2.677-686.2006

Hanahan, 1983, Studies on transformation of Escherichia coli with plasmids, J Mol Biol, 166, 557, 10.1016/S0022-2836(83)80284-8

Kanehisa, 2006, From genomics to chemical genomics: new developments in KEGG, Nucleic Acids Res, 34, D354, 10.1093/nar/gkj102

Kieser, 2000, Practical Streptomyces Genetics

Mansouri, 1991, Genetics of streptomycin production in Streptomyces griseus : nucleotide sequence of five genes, strFGHIK , including a phosphatase gene, Mol Gen Genet, 228, 459, 10.1007/BF00260640

Martín, 2004, Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story, J Bacteriol, 186, 5197, 10.1128/JB.186.16.5197-5201.2004

Martín, 1977, Cleavage of adenosine-5′-monophosphate during uptake by Streptomyces griseus, J Bacteriol, 132, 590, 10.1128/JB.132.2.590-595.1977

Martín, 1980, Control of antibiotic synthesis, Microbiol Rev, 44, 230, 10.1128/MMBR.44.2.230-251.1980

Martín, 1994, Phosphate control of antibiotic biosynthesis at the transcriptional level, Phosphate in Microorganisms: Cellular and Molecular Biology, 140

Martín, 2000, Secondary metabolites, Encyclopedia of Microbiology, vol. 4, 213

Martínez-Domínguez, 2002, Phytic acid: nutritional aspects and analytical implications, Arch Latinoam Nutr, 52, 219

Mendes, 2007, The two-component phoR-phoP system of Streptomyces natalensis : inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis, Metab Eng, 9, 217, 10.1016/j.ymben.2006.10.003

Moura, 2001, Substrate analysis and molecular cloning of the extracellular alkaline phosphatase of Streptomyces griseus, Microbiology, 147, 1525, 10.1099/00221287-147-6-1525

Patek, 2003, Function of Corynebacterium glutamicum promoters in Escherichia coli , Streptomyces lividans , and Bacillus subtilis, J Biotechnol, 104, 325, 10.1016/S0168-1656(03)00159-7

Rodríguez-García, 1997, Arginine boxes and the arg R gene in Streptomyces clavuligerus : evidence for a clear regulation of the arginine pathway, Mol Microbiol, 25, 219, 10.1046/j.1365-2958.1997.4511815.x

Rodríguez-García, 2007, Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a Δ phoP mutant, Proteomics, 7, 2410, 10.1002/pmic.200600883

Schaerlaekens, 2004, Comparison of the Sec and Tat secretion pathways for heterologous protein production by Streptomyces lividans, J Biotechnol, 112, 279, 10.1016/j.jbiotec.2004.05.004

Sola-Landa, 2003, The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividan s, Proc Natl Acad Sci U S A, 100, 6133, 10.1073/pnas.0931429100

Sola-Landa, 2005, Binding of PhoP to promoters of phosphate regulated genes in Streptomyces coelicolor : identification of PHO boxes, Mol Microbiol, 56, 1373, 10.1111/j.1365-2958.2005.04631.x

Stieglitz, 1999, The role of interfacial binding in the activation of Streptomyces chromofuscus phospholipase D by phosphatidic acid, J Biol Chem, 274, 35367, 10.1074/jbc.274.50.35367

Stieglitz, 2001, Binding of proteolytically processed phospholipase D from Streptomyces chromofuscus to phosphatidylcholine membranes facilitates vesicle aggregation and fusion, Biochemistry, 40, 13954, 10.1021/bi011338o

von Döhren, 1997, General aspects of secondary metabolism, Biotechnology , vol. 7. Products of Secondary Metabolism, 1, 10.1002/9783527620890.ch1

Widdick, 2006, The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor, Proc Natl Acad Sci U S A, 103, 17927, 10.1073/pnas.0607025103

Yang, 2002, Cloning, overexpression, and characterization of a bacterial Ca2+-dependent phospholipase D, Protein Sci, 11, 2958, 10.1110/ps.0225302