Science teacher education in Malaysia: challenges and way forward
Tóm tắt
This concept paper discussed the development of science teacher education programs in Malaysia. The discussion encompassed the existing policies, practices and issues, arising from the science teacher education. This paper also reviewed some suggestions for the direction in pre-service training and in-service science teacher training. The development of science teacher education is closely related to the development of science education curriculum. The development of the science education curriculum is connected with the socio-economic needs, political demands of the country and the influence of globalization. Science teacher education in Malaysia began with the training provided by British instructors, which was known as British curriculum. British curriculum was adopted in Malaysia after the independence of Malaya in 1957. In the 1980s, the medium of instruction for science teacher training was changed to Malay. Nevertheless, in 2003, pre-service and in-service science teachers were trained to teach Science in English due to the established policy of Science and Mathematics teaching in English. In 2012, the policy of teaching Science and Mathematics in English was terminated. Subsequently, the medium of instruction in Science was reverted to Malay. Today, the science teachers at the secondary school are trained in the universities, whereas the science teachers at the primary school are trained in Institute of Teacher Education. Meanwhile, the objective of the in-service science teacher training is to give the teachers an insight into any changes in the implemented science curriculum. The science teachers are required to conduct teaching integrating Science, Technology, Engineering and Mathematics (STEM). In addition, science teachers in the selected schools are required to teach Science in English under the Dual Language Programs (DLP).
Tài liệu tham khảo
Albirini, A. (2006). Teachers' attitudes toward information and communication technologies. The case of Syrian EFL teachers. Computer & Education, 47:373–398.
Bahrum, S., Wahid, N., & Ibrahim, N. (2017). Integration of STEM education in Malaysian and why to STEAM. International Journal of Academic Research in Business and Social Sciences, 7(6), 645–654.
Barak (2014). Closing the gap between attitudes and perceptions about ICTenhanced learning among pre-service STEM teachers. J Sci Educ Technol (2014) 23:1–14.
Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K–12: What is involved and what is the role of the computer science education community? ACM Inroads, 2(1), 48–54.
Calao, L. A., Moreno-León, J., Correa, H. E., & Robles, G. (2015). Developing mathematical thinking with scratch: An experiment with 6th-grade students. In Proceedings of the Design for Teaching and Learning in a networked world 10th European conference on technology enhanced learning, Toledo, Spain, sept. 15–18 (pp. 17–27). New York: Springer International Publishing.
Chan, S. H., & Abdullah, A. N. (2015). Bilingualism in Malaysia: Language education policy and local needs. Pertanika Journal of Social Science and Humanities, 23(s), 55–70.
Che Seman, S., Wan Yusoff, W. M., & Embong, R. (2017). Teachers challenges in teaching and learning for higher order thinking skills (HOTS) in primary school. International Journal of Asian Social Science, 7(7), 534–545.
Goh, P. S. C., & Blake, D. (2015). Teacher preparation in Malaysia: Needed changes. Teaching in Higher Education, 20, 469–480. https://doi.org/10.1080/13562517.2015.1020780.
Halim, L., Dahlan, F., Treagust, D. F., & Chandrasegaran, A. L. (2012). Experiences of teaching the heat energy topic in English as a second language. Science Education International, 23(2), 17–132.
Halim, L., & Meerah, T. S. (2016). Science education research and practice in Malaysia. In M. H. Chui (Ed.), Science education research and practice in Asia: Challenges and opportunities (pp. 71–93). Singapore: Springer.
Hashim, R. (2003). Malaysian’s teachers attitude, competency and practices in the teaching of thinking. International Islamic University Malaysia, 11(1), 27–50.
Idris, N., Cheong, L. S., Nor, N. M., Abdul Razak, A. Z., & Saad, R. M. (2007). The professional preparation of Malaysian teachers in the implementation of teaching and learning of mathematics and science in English. Eurasia Journal of Mathematics Science and Technology Education, 3(2), 101–110.
Jamil, H., Abd Razak, N., Ahmad, M. Z., & Issa, J. H. (2010). A study on the policies and practices of teacher education in Malaysia towards producing quality pre-service teachers. In Comparative evidence on the development of initial teacher education policy in the Asia-Pacific region (pp. 15–17).
Kassim, N., & Zakaria, E. (2015). Integrasi kemahiran berfikir aras tinggi dalam pengajaran dan pembelajaran matematik: Analisis Keperluan Guru. Jurnal Pendidikan Matematik, 3(1), 1–12.
Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(11), 1–11. https://doi.org/10.1186/s40594-016-0046-z.
Lee, M. N. N. (2004). Malaysian teacher education into the new century. In Y. C. Cheng, K. W. Chow, & M. M. C. Mok (Eds.), Reform of teacher education in the Asia-Pacific in the new millennium: Trends and challenges, Education in the Asia-Pacific region: Issues concerns and prospects, vol 3 (pp. 81–91). Dordrecht: Springer.
Malaysia Ministry of Education. (2013). Malaysia education blueprint 2013–2025. Putrajaya: Ministry of Education.
Ministry of Education Malaysia (MOE). (2016). Implementation guide for science, technology, engineering, and mathematics (STEM) in teaching and learning. Putrajaya: MOE.
Mustafa, N., Ismail, Z., Tasir, Z., & Said, M. N. H. M. (2016). A meta-analysis of effective strategies for integrated STEM education. Advanced Science Letters, 12, 4225–4229.
National Research Council. (2011). Report of a workshop of pedagogical aspects of computational thinking. Washington, D. C: The National Academies Press.
Othman, J., & Mohd Saat, R. (2009). Challenges of using English as a medium of instruction: Pre-service science teachers’ perspective. The Asia-Pacific Education Researcher, 18(2), 307–316.
Ramli, N. F., & Talib, O. (2017). Can education institution implement STEM? From Malaysian teachers’ view.International Journal of Academic Research in Business and Social Sciences, 7(3), 721–732.
Roslan, S., Sharifah, M. N., & Thirumalai, V. N. (2012). The burnout phenomenon: Changes in psychosocial profiles of secondary school teachers. Pertanika Journal of Social Science and Humanities, 20(s), 157–174.
Rosnaini, M. and H.I. Mohd Arif, (2010). Impact of training and experience in using ICT on in-service teachers’ basic ICT literacy. Malaysian Journal of Education Technology, 10(2):1–8.
Siew, N. M., Amir, N., & Chong, C. L. (2015). The perceptions of pre-service and in-service teachers regarding a project-based STEM approach to teaching science. SpringerPlus, 4(1), 1–20.
Sing, T. K. R., & Chan, S. (2014). Teacher readiness on ICT integration in teaching-learning: A Malaysian case study. International Journal of Asian Social Science., 4(7), 874–885.
Sumintono, B. (2015). Science education in Malaysia: Challenges in the 21st century. Yogjakarta: Paper presented at 1st International Seminar on Science at Universitas Negeri Yogjakarta.
Unting, J. G., & Yamat, H. (2017). Dual language Programme (DLP): Teachers’ voice. In Proceedings of 73rd ISERD international conference (pp. 20–24). Bali.
Wing, J. M. (2006). Computational thinking. Communication ACM., 49(3), 33–35.
Yadav, A., Stephenson, C., & Hong, H. (2017). Computational thinking for teacher education. Communications of the ACM, 60(4), 55–62.
Yunus, M. M., & Sukri, S. I. A. (2017). The use of English in teaching mathematics and science: The PPSMI policy Vis-ά-Vis the DLP. Advances in Language and Literacy Studies., 8(1), 133–142.