Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing
Tóm tắt
Digital retinal imaging is a challenging screening method for which effective, robust and cost-effective approaches are still to be developed. Regular screening for diabetic retinopathy and diabetic maculopathy diseases is necessary in order to identify the group at risk of visual impairment. This paper presents a novel automatic detection of diabetic retinopathy and maculopathy in eye fundus images by employing fuzzy image processing techniques. The paper first introduces the existing systems for diabetic retinopathy screening, with an emphasis on the maculopathy detection methods. The proposed medical decision support system consists of four parts, namely: image acquisition, image preprocessing including four retinal structures localisation, feature extraction and the classification of diabetic retinopathy and maculopathy. A combination of fuzzy image processing techniques, the Circular Hough Transform and several feature extraction methods are implemented in the proposed system. The paper also presents a novel technique for the macula region localisation in order to detect the maculopathy. In addition to the proposed detection system, the paper highlights a novel online dataset and it presents the dataset collection, the expert diagnosis process and the advantages of our online database compared to other public eye fundus image databases for diabetic retinopathy purposes.
Tài liệu tham khảo
Taylor R, Batey D (2012) Handbook of retinal screening in diabetes: diagnosis and management. Wiley, Newcastle Upon Tyne
Ministry of Health Malaysia Diabetic Retinopathy Screening Team (2012) Diabetes mellitus and complications—module 4-2012. Ministry of Health Malaysia, Putrajaya
Ministry of Health Malaysia Diabetic Retinopathy Screening Team (2012) Diabetes mellitus and complications—module 3-2012. Ministry of Health Malaysia, Putrajaya
Sheet D, Garud H, Suveer A, Mahadevappa M, Chatterjee J (2010) Brightness preserving dynamic fuzzy histogram equalization. IEEE Trans Consum Electron 56(4):2475–2480
Garud H, Sheet D, Suveer A, Karri PK, Ray AK, Mahadevappa M, Chatterjee J (2011) Brightness preserving contrast enhancement in digital pathology. In: 2011 International conference on image information processing, New York, pp 1–5
Rahim SS, Jayne C, Palade V, Shuttleworth J (2015) Automatic detection of microaneurysms in colour fundus images for diabetic retinopathy screening. J Neural Comput Appl. doi:10.1007/s00521-051-1929-5 available online, in press
Rahim SS, Palade V, Shuttleworth J, Jayne C, Raja Omar RN (2015) Automatic detection of microaneurysms for diabetic retinopathy screening using fuzzy image processing. In: Iliadis L et al (eds) Engineering applications of neural networks. Communications in computer and information science, vol 517. Springer, Heidelberg
Rahim SS, Palade V, Jayne C, Holzinger A, Shuttleworth J (2015) Detection of diabetic retinopathy and maculopathy in eye fundus images using fuzzy image processing. In: Guo Y et al (eds) Brain Informatics and Health, BIH 2015. LNAI 9250. Springer, Heidelberg
Patil J, Chaudhari AL (2012) Development of digital image processing using Fuzzy Gaussian filter tool for diagnosis of eye infection. Int J Comput Appl 51(19):10–12
Toh KKV, Mat Isa NA (2010) Noise adaptive Fuzzy switching median filter for salt-and-pepper noise reduction. IEEE Signal Process Lett 17(3):281–284
Toh KKV, Ibrahim H (2008) Salt-and-pepper noise detection and reduction using fuzzy switching median filter. IEEE Trans Consum Electron 54(4):1956–1961
Kwan HK, Chai Y (2002) Fuzzy filters for image filtering. In: Proceedings of 45th IEEE international midwest symposium on circuits and systems, Tulsa, pp 672–675
Kwan HK (2003) Fuzzy filters for noisy image filtering. In: Proceedings of IEEE international symposium on circuits and systems, Bangkok, IV-161–IV-164
Priya R, Aruna P, Suriya R (2013) Image analysis technique for detecting diabetic retinopathy. Int J Comput Appl 1:34–38
Selvathi D, Prakash NB, Balagopal N (2012) Automated detection of diabetic retinopathy for early diagnosis using feature extraction and support vector machine. Int J Emerg Technol Adv Eng 2(11):762–767
Lichode RV, Kulkarni PS (2013) Automatic diagnosis of diabetic retinopathy by hybrid multilayer feed forward neural network. Int J Sci Eng Technol Res (IJSETR) 2(9):1727–1733
Selvathi D, Prakash NB, Balagopal N (2012) Automated detection of diabetic retinopathy for early diagnosis using feature extraction and support vector machine. Int J Emerg Technol Adv Eng 2(11):762–767
Adal KM, Sidibe D, Ali S, Chaum E, Karnowski TP, Meriaudeau F (2014) Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning. Comput Methods Programs Biomed 114:1–10. doi:10.1016/j.cmpb.2013.12.009
Akram MU, Khalid S, Khan SA (2013) Identification and classification of microaneurysms for early detection of diabetic retinopathy. Pattern Recogn 46:107–116. doi:10.1016/j.patcog.2012.07.002
Antal B, Hajdu A (2013) Improving microaneurysm detection in color fundus images by using context-aware approaches. Comput Med Imaging Graph 37:403–408. doi:10.1016/j.compmedimag.2013.05.001
Prakash J, Sumanthi K (2013) Detection and classification of microaneurysms for diabetic retinopathy. Int J Eng Res Appl 4:31–36
Aravind C, Ponnibala M, Vijayachitra S (2013) Automatic detection of microaneurysms and classification of diabetic retinopathy images using SVM technique. In: IJCA Proceedings on international conference on innovations in intelligent instrumentation, optimization and electrical sciences ICIIIOES (11), pp 18–22
Akram MU, Khalid S, Tariq A, Khan SA, Azam F (2014) Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput Biol Med 45:161–171. doi:10.1016/j.compbiomed.2013.11.014
Zhang X, Thibault G, Decenciere E, Marcotegui B, Lay B, Danno R, Cazuguel G, Quellec G, Lamard M, Massin P, Chabouis VZ, Erginay A (2014) Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med Image Anal 18(7):1026–1043. doi:10.1016/j.media.2014.05.004
Wisaeng K, Hiransakolwong N, Pothiruk E (2013) Automatic detection of exudates in digital retinal images. Int J Comput Appl 64(4):19–26. doi:10.5120/10622-5342
Harangi B, Antal B, Hajdu A (2012) Automatic exudate detection with improved Naïve-Bayes classifier. In: Proceedings of the 25th IEEE international symposium on computer-based medical systems, Roma, pp 1–4
Akram MU, Khalid S, Tariq A, Khan SA, Azam F (2014) Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput Biol Med 45:161–171. doi:10.1016/j.compbiomed.2013.11.014
Sundhar C, Archana D (2014) Automatic screening of fundus images for detection of diabetic retinopathy. Int J Commun Comput Technol 2(1):100–105
Lim G, Lee ML, Hsu W, Wong TY (2014) Transformed representations for convolutional neural networks in diabetic retinopathy screening. Modern Artif Intell Health Anal 55:21–25
Akram MU, Khalid S, Tariq A, Javed MJ (2013) Detection of neovascularization in retinal images using multivariate m-Mediods based classifier. Comput Med Imaging Graph 37:346–357. doi:10.1016/j.compmedimag.2013.06.008
Hassan SSA, Bong DBL (2012) Detection of neovascularization in diabetic retinopathy. J Digit Imaging 25:437–444. doi:10.1007/s10278-011-9418-6
Akram MU, Jamal I, Tariq A, Imtiaz J (2012) Automated segmentation of blood vessels for detection of proliferative diabetic retinopathy. In: Proceedings of the IEEE-EMBS international conference on biomedical and health informatics, Hong Kong, pp 232–235
Rahim SS, Palade V, Shuttleworth J, Jayne C (2014) Automatic screening and classification of diabetic retinopathy fundus images. In: Mladenov V et al (eds) Engineering applications of neural networks. Communications in computer and information science, vol 459. Springer, Heidelberg, pp 113–122
Li BM, Chui CK, Chang S, Ong SH (2011) Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Comput Biol Med 41(1):1–10
Kumar TA, Priya S, Paul V (2013) A novel approach to the detection of macula in human retinal imagery. Int J Signal Process Syst 1(1):23–28
Mubbashar M, Usman A, Akram MU (2011) Automated system for macula detection in digital retinal images. In: International conference on information and communication technologies, Karachi, pp 1–5
Akram MU, Tariq A, Khan SA, Javed MY (2014) Automated detection of exudates and macula for grading of diabetic macular edema. Comput Methods Programs Biomed 114:141–152
Sekhar S, Al-Nuaimy W, Nandi AK (2008) Automated localisation of optic disk and fovea in retinal fundus images. In: 16th European signal processing conference, Lausanne, pp 1–5
Punnolil A (2013) A novel approach for diagnosis and severity grading of diabetic maculopathy. International conference on advances in computing, communications and informatics, Mysore, pp 1230–1235
Tariq A, Akram MU, Arslan S, Khan SA (2013) Automated detection and grading of diabetic maculopathy in digital retinal images. J Digit Imaging 26:803–812
Vimala GSAG, Kajamohideen S (2014) Detection of diabetic maculopathy in human retinal using morphological operations. J Biol Sci 14(3):175–180
Siddalingaswamy PC, Prabhu KG (2010) Automatic grading of diabetic maculopathy severity levels. In: Proceedings of 2010 international conference on systems in medicine and biology, Kharagpur, pp 331–334
Hunter A, Lowell JA, Ryder B, Basu A, Steel D (2011) Automated diagnosis of referable maculopathy in diabetic retinopathy screening. In: 33rd Annual international conference of the IEEE EMBS, Boston, pp 3375–3378
Chowriappa P, Dua S, Acharya UR, Krishnan MMR (2013) Ensemble selection for feature-based classification of diabetic maculopathy images. Comput Biol Med 43:2156–2162
Kauppi T, Kalesnykiene V, Kamarainen J-K, Lensu L, Sorri I, Uusitalo H, Kalviainen H, Pietila J. (2006) DIARETDB0: evaluation database and methodology for diabetic retinopathy algorithms, Technical report
Kauppi T, Kalesnykiene V, Kamarainen J-K, Lensu L, Sorri I, Raninen A, Voutilainen R, Uusitalo H, Kalviainen H, Pietila J (2007) DIARETDB1 diabetic retinopathy database and evaluation protocol, Technical report
Messidor (2004) Messidor: digital retinal images. http://messidor.crihan.fr/index-en.php, Accessed on 16 Jan 2014
Staal JJ, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B (2004) Ridge based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23:501–509
Hoover A, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piece-wise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210
Hoover A, Goldbaum M (2003) Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 22(8):951–958
Al-Diri B, Hunter A, Steel D, Habib M, Hudaib T, Berry S (2008) REVIEW—a reference data set for retinal vessel profiles. In: 30th Annual international IEEE EMBS conference, Vancouver, pp 2262–2265
Niemeijer M, van Ginnerken B, Cree MJ, Mizutani A, Quellec G, Sanchez CI, Zhang B, Hornero R, Lamard M, Muramatsu C, Wu X, Cazuquel G, You J, Mayo A, Li Q, Hatanaka Y, Cochener B, Roux C, Karray F, Garcia M, Fujita H, Abramoff MD (2010) Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans Med Imaging 29(1):185–195
Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT (2003) Proposed international clinical diabetic retinopathy and diabetic macula edema disease severity scales. Am Acad Ophthalmol 110(9):1677–1682
ImageJ (2014) [online] available at http://imagej.net/ImageJ, Accessed date on 18 July 2014
Ministry of Health Malaysia Diabetic Retinopathy Screening Team (2012) Diabetes mellitus and complications—module 5-2012. Ministry of Health Malaysia, Putrajaya