Tuning the electronic structures and transport coefficients of Janus PtSSe monolayer with biaxial strain

Journal of Applied Physics - Tập 126 Số 15 - 2019
San‐Dong Guo1, Xiao-Shu Guo1, Ye Deng1
1School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China

Tóm tắt

Due to their great potential in electronics, optoelectronics, and piezoelectronics, Janus transition metal dichalcogenide monolayers have attracted an increased interest in research, and the MoSSe monolayer of them with the sandwiched S-Mo-Se structure has been synthesized experimentally. Here, we systematically study the effect of strain on electronic structures and transport properties of the Janus PtSSe monolayer. A detrimental effect on the power factor of the PtSSe monolayer can be observed when the spin-orbital coupling is included. With a/a0 from 0.94 to 1.06, the energy bandgap shows a nonmonotonic behavior, which is due to the position change of conduction band minimum. The strength of conduction bands convergence can be enhanced by changing the relative position of conduction band extrema caused by compressive strain, which is in favor of the n-type ZTe. Calculated results show that compressive strain can also induce flat valence bands around the Γ point near the Fermi level, which can lead to a high Seebeck coefficient due to large effective masses, giving rise to better p-type ZTe values. The calculated elastic constants with a/a0 from 0.94 to 1.06 all satisfy the mechanical stability criteria, which proves that the PtSSe monolayer is mechanically stable in the considered strain range. Our works provide a new route to tune the electronic structures and transport coefficients of the Janus PtSSe monolayer by biaxial strain and can motivate related experimental studies.

Từ khóa


Tài liệu tham khảo

2004, Science, 306, 666, 10.1126/science.1102896

2015, Chem. Soc. Rev., 44, 2713, 10.1039/C4CS00182F

2013, Nat. Chem., 5, 263, 10.1038/nchem.1589

2015, Chem. Soc. Rev., 44, 2744, 10.1039/C4CS00256C

2016, Nat. Photonics, 10, 216, 10.1038/nphoton.2015.282

2015, ACS Nano, 9, 9885, 10.1021/acsnano.5b03394

2019, Nanoscale, 11, 6045, 10.1039/C9NR00080A

2013, J. Appl. Phys., 113, 104304, 10.1063/1.4794363

2017, J. Phys. Condens. Matter, 29, 015001, 10.1088/0953-8984/29/1/015001

2016, Semicond. Sci. Technol., 31, 095011, 10.1088/0268-1242/31/9/095011

2016, J. Mater. Chem. C, 4, 4538, 10.1039/C6TC01135G

2016, J. Mater. Chem. C, 4, 9366, 10.1039/C6TC03074B

2017, Phys. Chem. Chem. Phys., 19, 32072, 10.1039/C7CP06065C

2017, Nat. Nanotechnol., 12, 744, 10.1038/nnano.2017.100

2017, ACS Nano, 11, 8242, 10.1021/acsnano.7b03313

2018, J. Mater. Chem. C, 6, 1693, 10.1039/C7TC05225A

2013, Europhys. Lett., 102, 57001, 10.1209/0295-5075/102/57001

2018, J. Mater. Chem. A, 6, 2295, 10.1039/C7TA10015A

2019, J. Mater. Chem. A, 7, 603, 10.1039/C8TA09177C

2017, J. Phys. Chem. Lett., 8, 5959, 10.1021/acs.jpclett.7b02841

2018, Phys. Chem. Chem. Phys., 20, 7236, 10.1039/C8CP00350E

2019, Comp. Mater. Sci., 161, 16, 10.1016/j.commatsci.2019.01.035

2018, Semicond. Sci. Technol., 33, 085003, 10.1088/1361-6641/aacb11

2016, Adv. Mater., 28, 2399, 10.1002/adma.201504572

2015, Nano Lett., 15, 4013, 10.1021/acs.nanolett.5b00964

2014, Nano Res., 7, 1731, 10.1007/s12274-014-0532-x

2013, J. Phys. Chem. C, 117, 20440, 10.1021/jp405808a

2018, J. Phys. Condens. Matter, 30, 415501, 10.1088/1361-648X/aadf2f

2010, Phys. Rev. B, 82, 035204, 10.1103/PhysRevB.82.035204

2010, Phys. Rev. B, 81, 195217, 10.1103/PhysRevB.81.195217

1964, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864

1965, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133

2001, WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties

1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

1980, J. Phys. C, 13, 2675, 10.1088/0022-3719/13/14/009

2006, Plane Waves, Pseudopotentials and the LAPW Method, 2nd ed.

2001, Phys. Rev. B, 64, 153102, 10.1103/PhysRevB.64.153102

1977, J. Phys. C Solid State Phys., 10, 3107, 10.1088/0022-3719/10/16/019

2006, Comput. Phys. Commun., 175, 67, 10.1016/j.cpc.2006.03.007

2017, Chem. Phys. Lett., 669, 233, 10.1016/j.cplett.2016.12.054

2019, Philos. Mag., 99, 1025, 10.1080/14786435.2019.1572927

2012, Phys. Rev. B, 85, 125428, 10.1103/PhysRevB.85.125428

2016, Comp. Mater. Sci., 123, 8, 10.1016/j.commatsci.2016.06.011

2012, Nano Res., 5, 43, 10.1007/s12274-011-0183-0

2017, RSC Adv., 7, 47243, 10.1039/C7RA08828K

1993, Phys. Rev. B, 47, 12727, 10.1103/PhysRevB.47.12727

1993, Phys. Rev. B, 47, 16631(R), 10.1103/PhysRevB.47.16631

2011, Nature, 473, 66, 10.1038/nature09996

2013, Nano Lett., 13, 5361, 10.1021/nl402875m

2014, ACS Nano, 8, 4074, 10.1021/nn405938z