Interpreting risk factors for truck crash severity on mountainous freeways in Jiangxi and Shaanxi, China
Tóm tắt
The occurrence and severity of truck crashes generally involve complex interactions among factors correlated to driver characteristics, vehicle attributes, roadway geometry and environment conditions. Thus, the elucidation of the significance of these potential contributory factors is critical when developing safety improvement countermeasures. To this end, data from a total of 1175 crashes involving at least one large truck and collected between 2010 and 2015 from two typical freeways in mountainous areas in Jiangxi and Shaanxi (China), were analyzed using a partial proportional odds model to determine the significant risk factors for injury severity of these crashes. Fourteen total explanatory variables, including the age of the driver, seatbelt status, number of vehicle involved, type of transport, freight conditions, brake system status, disregarding speed limit or not, following distance, horizontal roadway alignment, vertical roadway alignment, seasons, day of week, time of crash, and weather were found to significantly affect the severities of the truck crashes. In addition, old drivers, involvement of multiple vehicles, failure to wear seatbelts, overloading, speeding, brake failure and risky following behavior, curve section, seasons (summer, autumn and winter), nighttime period, and adverse weather conditions were also found to significantly increase the likelihood of injury and fatality crashes. Taken together, these findings may serve as a useful guide for developing legislation and technical countermeasures to ensure truck safety on freeways in mountainous regions, particularly in the context of a developing country.
Tài liệu tham khảo
Chen, C., & Zhang, J. (2016). Exploring background risk factors for fatigue crashes involving truck drivers on regional roadway networks: A case control study in Jiangxi and Shaanxi, China. SpringerPlus, 5, 582. https://doi.org/10.1186/s40064-016-2261-y (12 pages).
Departmsent of Environment, Transport and the Regions. (1998). Accidents Great Britain 1997 – The casualty report. London: Government Statistical Service.
Wang, Y., & Prato, C. G. (2019). Determinants of injury severity for truck crashes on mountain expressways in China: A case-study with a partial proportional odds model. Safety Science, 117, 100–107. https://doi.org/10.1016/j.ssci.2019.04.011.
Chu, H. C. (2012). An investigation of the risk factors causing severe injuries in crashes involving gravel trucks. Traffic Injury Prevention, 13(4), 355–363. https://doi.org/10.1080/15389588.2012.654545.
Ma, Z., Zhao, W., Chien, S. I., & Dong, C. (2015). Exploring factors contributing to crash injury severity on rural two-lane highways. Journal of Safety Research, 55, 171–176. https://doi.org/10.1016/j.jsr.2015.09.003.
Elshamly, A. F., El-Hakim, R. A., & Afify, H. A. (2017). Factors affecting accidents risks among truck drivers in Egypt. MATEC Web of Conferences, 124, 04009. https://doi.org/10.1051/matecconf/201712404009 (5 pages).
Di Milia, L. (2006). Shift work, sleepiness and long distance driving. Transportation Research Part F: Traffic Psychology and Behaviour, 9(4), 278–285. https://doi.org/10.1016/j.trf.2006.01.006.
Chen, C., & Xie, Y. (2014). The impacts of multiple rest-break periods on commercial truck driver’s crash risk. Journal of Safety Research, 48, 87–93. https://doi.org/10.1016/j.jsr.2013.12.003.
Islam, M., & Hernandez, S. (2013). Large truck–involved crashes: Exploratory injury severity analysis. Journal of Transportation Engineering, 139(6), 596–604. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000539.
Chang, L. Y., & Chien, J. T. (2013). Analysis of driver injury severity in truck-involved accidents using a non-parametric classification tree model. Safety Science, 51(1), 17–22. https://doi.org/10.1016/j.ssci.2012.06.017.
Khorashadi, A., Niemeier, D., Shankar, V., & Mannering, F. (2005). Differences in rural and urban driver-injury severities in accidents involving large-trucks: An exploratory analysis. Accident Analysis and Prevention, 37(5), 910–921. https://doi.org/10.1016/j.aap.2005.04.009.
Lemp, J. D., Kockelman, K. M., & Unnikrishnan, A. (2011). Analysis of large truck crash severity using heteroskedastic ordered probit models. Accident Analysis and Prevention, 43(1), 370–380. https://doi.org/10.1016/j.aap.2010.09.006.
Chen, F., & Chen, S. (2011). Injury severities of truck drivers in single- and multi-vehicle accidents on rural highways. Accident Analysis and Prevention, 43(5), 1677–1688. https://doi.org/10.1016/j.aap.2011.03.026.
Peng, Y., Wang, X., Peng, S., Huang, H., Tian, G., & Jia, H. (2018). Investigation on the injuries of drivers and copilots in rear-end crashes between trucks based on real world accident data in China. Future Generation Computer Systems, 86, 1251–1258. https://doi.org/10.1016/j.future.2017.07.065.
Dong, C., Dong, Q., Huang, B., Hu, W., & Nambisan, S. S. (2017). Estimating factors contributing to frequency and severity of large truck-involved crashes. Journal of Transportation Engineering, Part A: Systems, 143(8), 04017032. https://doi.org/10.1061/JTEPBS.0000060.
Islam, S., Jones, S. L., & Dye, D. (2014). Comprehensive analysis of single- and multi-vehicle large truck at-fault crashes on rural and urban roadways in Alabama. Accident Analysis and Prevention, 67, 148–158. https://doi.org/10.1016/j.aap.2014.02.014.
Gjerde, H., Normann, P. T., Christophersen, A. S., Samuelsen, S. O., & Mørland, J. (2011). Alcohol, psychoactive drugs and fatal road traffic accidents in Norway: A case-control study. Accident Analysis and Prevention, 43(3), 1197–1203. https://doi.org/10.1016/j.aap.2010.12.034.
Dong, C., Nambisan, S. S., Richards, S. H., & Ma, Z. (2015). Assessment of the effects of highway geometric design features on the frequency of truck involved crashes using bivariate regression. Transportation Research Part A: Policy and Practice, 75, 30–41. https://doi.org/10.1016/j.tra.2015.03.007.
Osman, M., Mishra, S., & Paleti, R. (2018). Injury severity analysis of commercially-licensed drivers in single-vehicle crashes: Accounting for unobserved heterogeneity and age group differences. Accident Analysis and Prevention, 118, 289–300. https://doi.org/10.1016/j.aap.2018.05.004.
Williams, R. (2006). Generalized ordered logit/partial proportional odds models for ordinal dependent variables. Stata Journal, 6(1), 58–82. https://doi.org/10.1177/1536867X0600600104.
Eluru, N., & Bhat, C. R. (2007). A joint econometric analysis of seat belt use and crash-related injury severity. Accident Analysis and Prevention, 39(5), 1037–1049. https://doi.org/10.1016/j.aap.2007.02.001.
Chen, G. X., Amandus, H. E., & Wu, N. (2014). Occupational fatalities among driver/sales workers and truck drivers in the United States, 2003-2008. American Journal of Industrial Medicine, 57(7), 800–809. https://doi.org/10.1002/ajim.22320.
Isiam, S., Hossain, A. B., & Barnett, T. E. (2016). Comprehensive injury severity analysis of SUV and pickup truck rollover crashes: Alabama case study. Transportation Research Record, 2601, 1–9. https://doi.org/10.3141/2601-01.
Thiese, M. S., Ott, U., Robbins, R., Effiong, A., Murtaugh, M., Lemke, M. R., Deckow-Schaefer, G., Kapellusch, J., Wood, E., Passey, D., Hartenbaum, N., Garg, A., & Hegmann, K. T. (2015). Factors associated with truck crashes in a large cross section of commercial motor vehicle drivers. Journal of Occupational and Environmental Medicine, 57(10), 1098–1106. https://doi.org/10.1097/JOM.0000000000000503.
Sassi, S., Hakko, H., Raty, E., & Riipinen, P. (2018). Light motor vehicle collisions with heavy vehicles - psychosocial and health related risk factors of drivers being at-fault for collisions. Forensic Science International, 291, 245–252. https://doi.org/10.1016/j.forsciint.2018.08.037.
Zheng, Z., Lu, P., & Lantz, B. (2018). Commercial truck crash injury severity analysis using gradient boosting data mining model. Journal of Safety Research, 65, 115–124. https://doi.org/10.1016/j.jsr.2018.03.002.
Wang, Y., Xin, M., Bai, H., & Zhao, Y. (2017). Can variations in visual behavior measures be good predictors of driver sleepiness? A real driving test study. Traffic Injury Prevention, 18(2), 132–138. https://doi.org/10.1080/15389588.2016.1203425.
Wang, Y., Li, L., & Prato, C. G. (2019). The relation between working conditions, aberrant driving behaviour and crash propensity among taxi drivers in China. Accident Analysis and Prevention, 126, 17–24. https://doi.org/10.1016/j.aap.2018.03.028.
Cardamone, A. S., Eboli, L., Forciniti, C., & Mazzulla, G. (2017). How usual behaviour can affect perceived drivers’ psychological state while driving. Transport, 32(1), 13–22. https://doi.org/10.3846/16484142.2015.1059885.
Razi-Ardakani, H., Mahmoudzadeh, A., & Kermanshah, M. (2018). A nested logit analysis of the influence of distraction on types of vehicle crashes. European Transport Research Review, 10, 44. https://doi.org/10.1186/s12544-018-0316-6 (14 pages).
Ma, C., Hao, W., Xiang, W., & Yan, W. (2018). The impact of aggressive driving behavior on driver-injury severity at highway-rail grade Ccrossings accidents. Journal of Advanced Transportation, 2018, 9841498. https://doi.org/10.1155/2018/9841498 (10 pages).
Hussain, G., Batool, I., Kanwal, N., & Abid, M. (2019). The moderating effects of work safety climate on socio-cognitive factors and the risky driving behavior of truck drivers in Pakistan. Transportation Research Part F: Traffic Psychology and Behaviour, 62, 700–715. https://doi.org/10.1016/j.trf.2019.02.017.
Braeckman, L., Verpraet, R., Van Risseghem, M., Pevernagie, D., & De Bacquer, D. (2011). Prevalence and correlates of poor sleep quality and daytime sleepiness in Belgian truck drivers. Chronobiology International, 28(2), 126–134. https://doi.org/10.3109/07420528.2010.540363.
Labat, L., Fontaine, B., Delzenne, C., Doublet, A., Marek, M. C., Tellier, D., Tonneau, M., Lhermitte, M., & Frimat, P. (2008). Prevalence of psychoactive substances in truck drivers in the Nord-Pas-de-Calais region (France). Forensic Science International, 174(2–3), 90–94. https://doi.org/10.1016/j.forsciint.2007.03.004.
Charbotel, B., Martin, J. L., Gadegbeku, B., & Chiron, M. (2003). Severity factors for truck drivers’ injuries. American Journal of Epidemiology, 158(8), 753–759. https://doi.org/10.1093/aje/kwg200.
Yang, D., Kuijpers, A., Dane, G., & Van der Sande, T. (2019). Impacts of large-scale truck platooning on Dutch highways. Transportation Research Procedia, 37, 425–432. https://doi.org/10.1016/j.trpro.2018.12.212.