A robust machine learning framework to identify signatures for frailty: a nested case-control study in four aging European cohorts

GeroScience - Tập 43 - Trang 1317-1329 - 2021
David Gomez-Cabrero1, Stefan Walter2, Imad Abugessaisa3, Rebeca Miñambres-Herraiz4, Lucia Bernad Palomares4, Lee Butcher5, Jorge D. Erusalimsky5, Francisco Jose Garcia-Garcia6, José Carnicero6, Timothy C. Hardman7, Harald Mischak8, Petra Zürbig8, Matthias Hackl9, Johannes Grillari9, Edoardo Fiorillo10, Francesco Cucca10, Matteo Cesari11, Isabelle Carrie12, Marco Colpo13, Stefania Bandinelli13, Catherine Feart14, Karine Peres14, Jean-François Dartigues14, Catherine Helmer14, José Viña15, Gloria Olaso15, Irene García-Palmero16, Jorge García Martínez16, Pidder Jansen-Dürr17, Tilman Grune18, Daniela Weber18, Giuseppe Lippi19, Chiara Bonaguri20, Alan J Sinclair21, Jesper Tegner3,22, Leocadio Rodriguez-Mañas23,24
1Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
2Dept. of Medicine and Public Health, Rey Juan Carlos University, Alcorcon, Spain
3Dept. of Medicine, Karolinska Institute, Stockholm, Sweden
4Sistemas Genomicos, Valencia, Spain
5Department of Biomedical Sciences, Cardiff Metropolitan University, Cardiff, UK
6Dept. of Geriatric Medicine, Complejo Hospitalario Universitario de Toledo (CHUT), Toledo, Spain
7Niche Science & Technology Ltd., London, UK
8Mosaiques Diagnostics, GmbH, Hannover, Germany
9Evercyte GmbH; BOKU-University of Natural Resources and Life Sciences Vienna, Department of Biotechnology, Ludwig Boltzmann Institute of Experimental and Clinical Traumatology, Vienna, Austria
10Instituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
11Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
12Gérontopôle, Toulouse, France
13USL Centro Toscana, Firenze, Italy
14Univ. Bordeaux, Bordeaux Population Health Research Center, Bordeaux, France
15Freshage, University of Valencia, Valencia, Spain
16Lifelength, Madrid, Spain
17Research Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
18German Institute for Human Nutrition, Potsdam, Germany
19Clinical Biochemistry and Molecular Biology, Universita di Verona, Verona, Italy
20Laboratoy Medicine Technical Sciences, Parma University, Parma, Italy
21Diabetes Frail and King’s College, London, UK
22Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
23CIBER of Frailty and Healthy Aging, Madrid, Spain
24Dept. of Geriatric Medicine, Getafe University Hospital, Getafe, Spain

Tóm tắt

Phenotype-specific omic expression patterns in people with frailty could provide invaluable insight into the underlying multi-systemic pathological processes and targets for intervention. Classical approaches to frailty have not considered the potential for different frailty phenotypes. We characterized associations between frailty (with/without disability) and sets of omic factors (genomic, proteomic, and metabolomic) plus markers measured in routine geriatric care. This study was a prevalent case control using stored biospecimens (urine, whole blood, cells, plasma, and serum) from 1522 individuals (identified as robust (R), pre-frail (P), or frail (F)] from the Toledo Study of Healthy Aging (R=178/P=184/F=109), 3 City Bordeaux (111/269/100), Aging Multidisciplinary Investigation (157/79/54) and InCHIANTI (106/98/77) cohorts. The analysis included over 35,000 omic and routine laboratory variables from robust and frail or pre-frail (with/without disability) individuals using a machine learning framework. We identified three protective biomarkers, vitamin D3 (OR: 0.81 [95% CI: 0.68–0.98]), lutein zeaxanthin (OR: 0.82 [95% CI: 0.70–0.97]), and miRNA125b-5p (OR: 0.73, [95% CI: 0.56–0.97]) and one risk biomarker, cardiac troponin T (OR: 1.25 [95% CI: 1.23–1.27]). Excluding individuals with a disability, one protective biomarker was identified, miR125b-5p (OR: 0.85, [95% CI: 0.81–0.88]). Three risks of frailty biomarkers were detected: pro-BNP (OR: 1.47 [95% CI: 1.27–1.7]), cardiac troponin T (OR: 1.29 [95% CI: 1.21–1.38]), and sRAGE (OR: 1.26 [95% CI: 1.01–1.57]). Three key frailty biomarkers demonstrated a statistical association with frailty (oxidative stress, vitamin D, and cardiovascular system) with relationship patterns differing depending on the presence or absence of a disability.

Tài liệu tham khảo

Liu L-K, Guo C-Y, Lee W-J, Chen L-Y, Hwang A-C, Lin M-H, et al. Subtypes of physical frailty: Latent class analysis and associations with clinical characteristics and outcomes. Sci Rep. 2017;7(1):46417. Davies B, García F, Ara I, Artalejo FR, Rodriguez-Mañas L, Walter S. Relationship Between sarcopenia and frailty in the toledo study of healthy aging: a population based cross-sectional study. J Am Med Dir Assoc. 2018;19(4):282–6. Searle SD, Mitnitski A, Gahbauer EA, Gill TM, Rockwood K. A standard procedure for creating a frailty index. BMC Geriatr. 2008;8(1):24. 3C Study Group. Vascular factors and risk of dementia: design of the Three-City Study and baseline characteristics of the study population. Neuroepidemiology. 2003;22(6):316–25. Justice JN, Ferrucci L, Newman AB, Aroda VR, Bahnson JL, Divers J, et al. A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME Biomarkers Workgroup. GeroScience. 2018;40(5–6):419–36. Viña J, Tarazona-Santabalbina FJ, Pérez-Ros P, Martínez-Arnau FM, Borras C, Olaso-Gonzalez G, et al. Biology of frailty: Modulation of ageing genes and its importance to prevent age-associated loss of function. Mol Aspects Med. 2016;50:88–108. Cutler RG, Mattson MP. The adversities of aging. Ageing Res Rev. 2006 Aug;5(3):221–38. Hayflick L. Biological aging is no longer an unsolved problem. Ann N Y Acad Sci. 2007;1100:1–13. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381(9868):752–62. Collard RM, Boter H, Schoevers RA, Oude Voshaar RC. Prevalence of frailty in community-dwelling older persons: a systematic review. J Am Geriatr Soc. 2012;60(8):1487–92. Siriwardhana DD, Hardoon S, Rait G, Weerasinghe MC, Walters KR. Prevalence of frailty and prefrailty among community-dwelling older adults in low-income and middle-income countries: a systematic review and meta-analysis. BMJ Open. 2018;8(3):e018195. Liljas AEM, Carvalho LA, Papachristou E, De Oliveira C, Wannamethee SG, Ramsay SE, et al. Self-reported vision impairment and incident prefrailty and frailty in English community-dwelling older adults: findings from a 4-year follow-up study. J Epidemiol Community Health. 2017 Nov;71(11):1053–8. Rodríguez-Mañas L, Féart C, Mann G, Viña J, Chatterji S, Chodzko-Zajko W, et al. Searching for an operational definition of frailty: a Delphi method based consensus statement. The Frailty Operative Definition-Consensus Conference Project. Journals Gerontol Ser A Biol Sci Med Sci. 2013;68(1):62–7. Clegg A, Hassan-Smith Z. Frailty and the endocrine system. Lancet Diabetes Endocrinol. 2018;6(9):743–52. Alonso-Bouzón C, Carcaillon L, García-García FJ, Amor-Andrés MS, El Assar M, Rodríguez-Mañas L. Association between endothelial dysfunction and frailty: the Toledo Study for Healthy Aging. Age (Dordr). 2014;36(1):495–505. Pansarasa O, Pistono C, Davin A, Bordoni M, Mimmi MC, Guaita A, et al. Altered immune system in frailty: Genetics and diet may influence inflammation. Ageing Res Rev. 2019;54:100935. Arauna D, García F, Rodríguez-Mañas L, Marrugat J, Sáez C, Alarcón M, et al. Older adults with frailty syndrome present an altered platelet function and an increased level of circulating oxidative stress and mitochondrial dysfunction biomarker GDF-15. Free Radic Biol Med. 2020;149:64–71. Kochlik B, Stuetz W, Pérès K, Pilleron S, Féart C, García García FJ, et al. Associations of fat-soluble micronutrients and redox biomarkers with frailty status in the FRAILOMIC initiative. J Cachexia Sarcopenia Muscle. 2019;10(6):1339–46. Butcher L, Carnicero JA, Gomez Cabrero D, Dartigues J-F, Pérès K, Garcia-Garcia FJ, et al. Increased levels of soluble receptor for advanced glycation end-products (RAGE) are associated with a higher risk of mortality in frail older adults. Age Ageing. 2019;48(5):696–702. El Assar M, Angulo J, Carnicero JA, Walter S, García-García FJ, López-Hernández E, et al. Frailty is associated with lower expression of genes involved in cellular response to stress: results from the Toledo Study for Healthy Aging. J Am Med Dir Assoc. 2017;18(8):734.e1–7. Fried LP, Xue Q-L, Cappola AR, Ferrucci L, Chaves P, Varadhan R, et al. Nonlinear multisystem physiological dysregulation associated with frailty in older women: implications for etiology and treatment. Journals Gerontol Ser A Biol Sci Med Sci. 2009;64A(10):1049–57. Trevisan C, Veronese N, Maggi S, Baggio G, Toffanello ED, Zambon S, et al. Factors influencing transitions between frailty states in elderly adults: The Progetto Veneto Anziani Longitudinal Study. J Am Geriatr Soc. 2017;65(1):179–84. Rodriguez-Mañas L, Laosa O, Vellas B, Paolisso G, Topinkova E, Oliva-Moreno J, et al. Effectiveness of a multimodal intervention in functionally impaired older people with type 2 diabetes mellitus. J Cachexia Sarcopenia Muscle. 2019;10(4):721–33. Trombetti A, Hars M, Hsu F-C, Reid KF, Church TS, Gill TM, et al. Effect of physical activity on frailty. Ann Intern Med. 2018;168(5):309–16. Nilsson R, Björkegren J, Tegnér J. On reliable discovery of molecular signatures. BMC Bioinformatics. 2009;10:38. Nilsson R, Peña JM, Björkegren J, Tegnér J. Detecting multivariate differentially expressed genes. BMC Bioinformatics. 2007;8:150. Angulo J, El Assar M, Álvarez-Bustos A, Rodríguez-Mañas L. Physical activity and exercise: strategies to manage frailty. Redox Biol. 2020;35:101513. Angulo J, El Assar M, Rodríguez-Mañas L. Frailty and sarcopenia as the basis for the phenotypic manifestation of chronic diseases in older adults. Mol Aspects Med. 2016;50:1–32. Huang S-T, Tange C, Otsuka R, Nishita Y, Peng L-N, Hsiao F-Y, et al. Subtypes of physical frailty and their long-term outcomes: a longitudinal cohort study. J Cachexia Sarcopenia Muscle. 2020;11(5):1223–31. Pamoukdjian F, Laurent M, Martinez-Tapia C, Rolland Y, Paillaud E, Canoui-Poitrine F. Frailty parameters, morbidity and mortality in older adults with cancer: a structural equation modelling approach based on the fried phenotype. J Clin Med. 2020;9(6):1826. Garcia-Garcia FJ, Gutierrez Avila G, Alfaro-Acha A, Amor Andres MS, de la Torre Lanza MDLA, Escribano Aparicio MV, et al. The prevalence of frailty syndrome in an older population from Spain. The Toledo study for healthy aging. J Nutr Heal AGING. 2011;15(10):852–6. Balzi D, Lauretani F, Barchielli A, Ferrucci L, Bandinelli S, Buiatti E, et al. Risk factors for disability in older persons over 3-year follow-up. Age Ageing. 2010;39(1):92–8. Ávila-Funes JA, Helmer C, Amieva H, Barberger-Gateau P, Le Goff M, Ritchie K, et al. Frailty among community-dwelling elderly people in France: the Three-City Study. Journals Gerontol Ser A Biol Sci Med Sci. 2008;63(10):1089–96. Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. Journals Gerontol Ser A Biol Sci Med Sci. 2004;59(3):M255–63. Calvani R, Picca A, Marini F, Biancolillo A, Gervasoni J, Persichilli S, et al. Identification of biomarkers for physical frailty and sarcopenia through a new multi-marker approach: results from the BIOSPHERE study. GeroScience. 2020. https://doi.org/10.1007/s11357-020-00197-x. Pérès K, Matharan F, Allard M, Amieva H, Baldi I, Barberger-Gateau P, et al. Health and aging in elderly farmers: the AMI cohort. BMC Public Health. 2012;12:558. Ferrucci L, Bandinelli S, Benvenuti E, Di Iorio A, Macchi C, Harris TB, et al. Subsystems contributing to the decline in ability to walk: bridging the gap between epidemiology and geriatric practice in the InCHIANTI study. J Am Geriatr Soc. 2000;48(12):1618–25. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. Journals Gerontol A. 2001;56(3):146–56. Erusalimsky JD, Grillari J, Grune T, Jansen-Duerr P, Lippi G, Sinclair AJ, et al. In search of ‘omics’-based biomarkers to predict risk of frailty and its consequences in older individuals: the FRAILOMIC Initiative. Gerontology. 2015;62(2):182–90. Lippi G, Jansen-Duerr P, Viña J, Durrance-Bagale A, Abugessaisa I, Gomez-Cabrero D, et al. Laboratory biomarkers and frailty: presentation of the FRAILOMIC initiative. Clin Chem Lab Med. 2015;53:e253–5. https://doi.org/10.1515/cclm-2015-0147. Van Buuren S, Groothuis-Oudshoorn K. Multivariate imputation by chained equations. J Stat Softw. 2011;45(3):1–67. Lagani V, Athineou G, Farcomeni A, Tsagris M, Tsamardinos I. Feature selection with the R package MXM: discovering statistically equivalent feature subsets. J Stat Software. 2017;1(7) SepAvailable from: https://www.jstatsoft.org/v080/i07. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. Hand DJ, Till RJ. A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach Learn. 2001;45(2):171–86. Nagaraj S, Zoltowska KM, Laskowska-Kaszub K, Wojda U. microRNA diagnostic panel for Alzheimer’s disease and epigenetic trade-off between neurodegeneration and cancer. Ageing Res Rev. 2018. https://doi.org/10.1016/j.arr.2018.10.008. Mohri T, Nakajima M, Takagi S, Komagata S, Yokoi T. MicroRNA regulates human vitamin D receptor. Int J Cancer. 125(6):1328–33. Semba RD, Varadhan R, Bartali B, Ferrucci L, Ricks MO, Blaum C, et al. Low serum carotenoids and development of severe walking disability among older women living in the community: the Women’s Health and Aging Study I. Age Ageing. 2007;36(1):62–7. Bruyère O, Cavalier E, Buckinx F, Reginster J-Y. Relevance of vitamin D in the pathogenesis and therapy of frailty. Curr Opin Clin Nutr Metab Care. 2017;20(1) Available from: https://journals.lww.com/co-clinicalnutrition/Fulltext/2017/01000/Relevance_of_vitamin_D_in_the_pathogenesis_and.6.aspx. Costello LC, Franklin RB. Plasma citrate homeostasis: how it is regulated; and its physiological and clinical implications. an important, but neglected, relationship in medicine. HSOA J Hum Endocrinol. 2016 [cited 2019 Feb 10]. ;1(1). Available from: http://www.ncbi.nlm.nih.gov/pubmed/28286881 Huang M, Que Y, Shen X. Correlation of the plasma levels of soluble RAGE and endogenous secretory RAGE with oxidative stress in pre-diabetic patients. J Diabetes Complications. 2015;29(3):422–6. Nakamura K, Yamagishi S, Adachi H, Kurita-Nakamura Y, Matsui T, Yoshida T, et al. Elevation of soluble form of receptor for advanced glycation end products (sRAGE) in diabetic subjects with coronary artery disease. Diabetes Metab Res Rev. 2007;23(5):368–71. Selvin E, Halushka MK, Rawlings AM, Hoogeveen RC, Ballantyne CM, Coresh J, et al. SRAGE and risk of diabetes, cardiovascular disease, and death. Diabetes. 2013;62(6):2116–21. Colhoun HM, Betteridge DJ, Durrington P, Hitman G, Neil A, Livingstone S, et al. Total soluble and endogenous secretory receptor for advanced glycation end products as predictive biomarkers of coronary heart disease risk in patients with type 2 diabetes. Diabetes. 2011;60(September):2379–85. Prasad K. Is there any evidence that AGE/sRAGE is a universal biomarker/risk marker for diseases? Mol Cell Biochem. 2019;451(1):139–44. Smedsrud MK, Gravning J, Omland T, Eek C, Mørkrid L, Skulstad H, et al. Sensitive cardiac troponins and N-terminal pro-B-type natriuretic peptide in stable coronary artery disease: correlation with left ventricular function as assessed by myocardial strain. Int J Cardiovasc Imaging. 2015;31(5):967–73. Daniels LB, Clopton P, DeFilippi CR, Sanchez OA, Bahrami H, Lima JAC, et al. Serial measurement of N-terminal pro-B-type natriuretic peptide and cardiac troponin T for cardiovascular disease risk assessment in the Multi-Ethnic Study of Atherosclerosis (MESA). Am Heart J. 2015;170(6):1170–83. Kajioka S, Takahashi-Yanaga F, Shahab N, Onimaru M, Matsuda M, Takahashi R, et al. Endogenous cardiac troponin T modulates Ca2+-mediated smooth muscle contraction. Sci Rep. 2012;2:1–7. Seidelmann SB, Vardeny O, Claggett B, Yu B, Shah AM, Ballantyne CM, et al. An NPPB promoter polymorphism associated with elevated N-terminal pro-b-type natriuretic peptide and lower blood pressure, hypertension, and mortality. J Am Heart Assoc. 2017;6(4). https://doi.org/10.1161/JAHA.116.005257. Rattray NJW, Trivedi DK, Xu Y, Chandola T, Johnson CH, Marshall AD, et al. Metabolic dysregulation in vitamin E and carnitine shuttle energy mechanisms associate with human frailty. Nat Commun. 2019;10(1):5027. Tegnér JN, Compte A, Auffray C, An G, Cedersund G, Clermont G, et al. Computational disease modeling - fact or fiction? BMC Syst Biol. 2009;3:56.