Hydrothermal phase transformation of hematite to magnetite

Jie-feng Lu1, Chia-Lung Tsai1
1Department of Material Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wang Y, Cao J, Wang S, Guo X, Zhang J, Xia H, Zhang S, Wu S: Facile synthesis of porous α-Fe2O3 nanorods and their application in ethanol sensors. J Phys Chem C 2008, 112: 17804–17808. 10.1021/jp806430f

Souza FL, Lopes KP, Longo E, Leite ER: The influence of the film thickness of nanostructured α-Fe2O3 on water photooxidation. Phys Chem Chem Phys 2009, 11: 1215–1219. 10.1039/b811946e

Wu PC, Wang WS, Huang YT, Sheu HS, Lo YW, Tsai TL, Shieh DB, Yeh CS: Porous iron oxide based nanorods developed as delivery nanocapsules. Chem Eur J 2007, 13: 3878–3885. 10.1002/chem.200601372

Zou Y, Kan J, Wang Y: Fe2O3-graphene rice-on-sheet nanocomposite for high and fast lithium ion storage. J Phys Chem C 2011, 115: 20747–20753. 10.1021/jp206876t

Dong FZ, Ling DS, Chun JJ, Zheng GY, Li PY, Chun HY: Hierarchical assembly of SnO2 nanorod arrays on α-Fe2O3 nanotubes: a case of interfacial lattice compatibility. J Am Chem Soc 2005, 127: 13492–13493. 10.1021/ja054771k

Reda SM: Synthesis of ZnO and Fe2O3 nanoparticles by sol–gel method and their application in dye-sensitized solar cells. Mater Sci Semicond Process 2010, 13: 417–425. 10.1016/j.mssp.2011.09.007

Zhang S, Chen X, Gu C, Zhang Y, Xu J, Bian Z, Yang D, Gu N: The effect of iron oxide magnetic nanoparticles on smooth muscle cells. Nanoscale Res Lett 2009, 4: 70–77. 10.1007/s11671-008-9204-7

Kallumadil M, Tada M, Nakagawa T, Abe M, Southern P, Pankhurst QA: Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater 2009, 321: 1509–1513. 10.1016/j.jmmm.2009.02.075

Thapa D, Palkar VR, Kurup MB, Malik SK: Properties of magnetite nanoparticles synthesized through a novel chemical route. Mater Lett 2004, 58: 2692–2694. 10.1016/j.matlet.2004.03.045

Zhang D, Liu Z, Han S, Li C, Lei B, Stewart MP, Tour JM, Zhou C: Magnetite (Fe3O4) core-shell nanowires: synthesis and magnetoresistance. Nano Lett 2004, 4: 2151–2155. 10.1021/nl048758u

Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, Kim K, Jon S: Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed 2008, 47: 5362–5365. 10.1002/anie.200800857

Zeng H, Li J, Liu JP, Wang ZL, Sun S: Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 2002, 420: 395–398. 10.1038/nature01208

Kay A, Cesar I, Gratzel M: New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J Am Chem Soc 2006, 128: 15714–15721. 10.1021/ja064380l

Karunakaran C, Anilkumarl P: Semiconductor-catalyzed solar photooxidation of iodide ion. J Mol Catal A Chem 2007, 265: 153–158. 10.1016/j.molcata.2006.10.016

Geng BY, Ma JZ, You JH: Controllable synthesis of single-crystalline Fe3O4 polyhedra possessing the active basal facets. Cryst Growth Des 2008, 8: 1443–1447. 10.1021/cg700931u

Zhang GY, Xu YY, Gao DZ, Sun YQ: α-Fe2O3 nanoplates: PEG-600 assisted hydrothermal synthesis and formation mechanism. J Alloys Compd 2011, 509: 885–890. 10.1016/j.jallcom.2010.09.124

Yin W, Chen X, Cao M, Hu C, Wei B: α-Fe2O3 nanocrystals: controllable SSA-assisted hydrothermal synthesis, growth mechanism, and magnetic properties. J Phys Chem C 2009, 113: 15897–15903. 10.1021/jp904413m

Liu L, Kou HZ, Mo W, Liu H, Wang Y: Surfactant-assisted synthesis of alpha-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. J Phys Chem B 2006, 110: 15218–15223. 10.1021/jp0627473

Nasibulin AG, Rackauskas S, Jiang H, Tian Y, Mudimela PR, Shandakov SD, Nasibulina LI, Sainio J, Kauppinen EI: Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res 2009, 2: 373–379. 10.1007/s12274-009-9036-5

Ramesh R, Ashok K, Bhalero GM, Ponnusamy S, Muthamizhchelvan C: Synthesis and properties of α-Fe2O3 nanorods. Cryst Res Technol 2010, 45: 965–968. 10.1002/crat.201000140

Zhang Z, Hossain MF, Takahashi T: Self-assembled hematite (α-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation. Appl Catal B Environ 2010, 95: 423–429. 10.1016/j.apcatb.2010.01.022

Hu X, Yu JC, Gong J, Li Q, Li G: α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv Mater 2007, 19: 2324–2329. 10.1002/adma.200602176

Chen D, Gao L: A facile route for high-throughput formation of single-crystal α-Fe2O3 nanodisks in aqueous solutions of Tween 80 and triblock copolymer. Chem Phys Lett 2004, 395: 316–320. 10.1016/j.cplett.2004.07.102

Qin W, Yang C, Yi R, Gao G: Hydrothermal synthesis and characterization of single-crystalline α-Fe2O3 nanocubes. J Nanomater 2011, 2011(159259):5.

Liu G, Deng Q, Wang H, Ng DHL, Kong M, Cai W, Wang G: Micro/nanostructured α-Fe2O3 spheres: synthesis, characterization, and structurally enhanced visible-light photocatalytic activity. J Mater Chem 2012, 22: 9704–9713. 10.1039/c2jm31586f

Nishino D, Nakafuji A, Yang JM, Shindo D: Precise morphology analysis on platelet-type hematite particles by transmission electron microscopy. ISIJ Int 1998, 38: 1369–1374. 10.2355/isijinternational.38.1369

Peng D, Beysen S, Li Q, Sun Y, Yang L: Hydrothermal synthesis of monodisperse α-Fe2O3 hexagonal platelets. Particuology 2010, 8: 386–389. 10.1016/j.partic.2010.05.003

Yu W, Zhang T, Zhang J, Qiao X, Yang L, Liu Y: The synthesis of octahedral nanoparticles of magnetite. Mater Lett 2006, 60: 2998–3001. 10.1016/j.matlet.2006.02.032

Li Z, Kawashita M, Araki N, Mitsumori M, Hiraoka M, Doi M: Preparation of magnetic iron oxide nanoparticles for hyperthermia of cancer in a FeCl2–NaNO3–NaOH aqueous system. J Biomater Appl 2011, 25: 643–661. 10.1177/0885328209351136

Zielinski J, Zglinickab I, Znaka L, Kaszkur Z: Reduction of Fe2O3 with hydrogen. Appl Catal A Gen 2010, 381: 191–196. 10.1016/j.apcata.2010.04.003

Viswanath RP, Viswanathan B, Sastri MVC: Kinetics of reduction of Fe2O3 to Fe3O4 by the constant temperature differential thermal analysis method. Thermochim Acta 1976, 16: 240–244. 10.1016/0040-6031(76)85063-0

Yanagisawa K, Yamasaki N: Reduction of haematite to magnetite under controlled hydrothermal conditions with hydrogen gas. J Mater Sci 1991, 26: 473–478. 10.1007/BF00576545

Ge J, Hu Y, Biasini M, Beyermann WP, Yinty Y: Superparamagnetic magnetite colloidal nanocrystal clusters. Angew Chem Int Ed 2007, 46: 4342–4345. 10.1002/anie.200700197

Qu S, Yang H, Ren D, Kan S, Zou G, Li D, Li M: Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. J Colloid Interface Sci 1999, 215: 190–192. 10.1006/jcis.1999.6185

Sapieszko RS, Matijewic E: Preparation of well-defined colloidal particles by thermal decomposition of metal chelates. J Colloid Interface Sci 1980, 74: 405–422. 10.1016/0021-9797(80)90210-6

Mitra S, Das S, Mandal K, Chaudhuri S: Synthesis of a α-Fe2O3 nanocrystal in its different morphological attributes: growth mechanism, optical and magnetic properties. Nanotechnology 2007, 18(275608):9.

Wan J, Chen X, Wang Z, Yang X, Qian Y: A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods. J Cryst Growth 2005, 276: 571–576. 10.1016/j.jcrysgro.2004.11.423

Khollam YB, Dhage SR, Potdar HS, Deshpande SB, Bakare PP, Kulkarni SD, Date SK: Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders. Mater Lett 2002, 56: 571–577. 10.1016/S0167-577X(02)00554-2

Slavov L, Abrashev MV, Merodiiska T, Gelev C, Vandenberghe RE, Markova-Deneva I, Nedkovt I: Raman spectroscopy investigation of magnetite nanoparticles in ferrofluids. J Magn Magn Mater 2010, 322: 1904–1911. 10.1016/j.jmmm.2010.01.005

Song K, Lee Y, Jo MR, Nam KM, Kang YM: Comprehensive design of carbon-encapsulated Fe3O4 nanocrystals and their lithium storage properties. Nanotechnology 2012, 23(505401):6.

Lv B, Liu Z, Tian H, Xu Y, Wu D, Sun Y: Single-crystalline dodecahedral and octodecahedralα-Fe2O3 particles synthesized by a fluoride anion-assisted hydrothermal method. Adv Funct Mater 2010, 20: 3987–3996. 10.1002/adfm.201001021

Jouffret L, Rivenet M, Abraham F: Linear alkyl diamine-uranium-phosphate systems: U(VI) to U(IV) reduction with ethylenediamine. Inorg Chem 2011, 50: 4619–4626. 10.1021/ic200345j

Zhang W, Gai L, Li Z, Jiang H, Ma W: Low temperature hydrothermal synthesis of octahedral Fe3O4 microcrystals. J Phys D Appl Phys 2008, 41: 225001–225007. 10.1088/0022-3727/41/22/225001