Pigs fed camelina meal increase hepatic gene expression of cytochrome 8b1, aldehyde dehydrogenase, and thiosulfate transferase
Tóm tắt
Camelina sativa is an oil seed crop which can be grown on marginal lands. Camelina seed oil is rich in omega-3 fatty acids (>35%) and γ-tocopherol but is also high in erucic acid and glucosinolates. Camelina meal, is the by-product after the oil has been extracted. Camelina meal was fed to 28 d old weaned pigs at 3.7% and 7.4% until age 56 d. The camelina meal supplements in the soy based diets, improved feed efficiency but also significantly increased the liver weights. Gene expression analyses of the livers, using intra-species microarrays, identified increased expression of phase 1 and phase 2 drug metabolism enzymes. The porcine versions of the enzymes were confirmed by real time PCR. Cytochrome 8b1 (CYP8B1), aldehyde dehydrogenase 2 (Aldh2), and thiosulfate transferase (TST) were all significantly stimulated. Collectively, these genes implicate the camelina glucosinolate metabolite, methyl-sulfinyldecyl isothiocyanate, as the main xeniobiotic, causing increased hepatic metabolism and increased liver weight.
Tài liệu tham khảo
Gehringer A, Friedt W, Luhs W, Snowdon RJ: Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa). Genome. 2006, 49: 1555-1563. 10.1139/g06-117.
Gesch RW, Archer DW: Double-cropping with winter camelina in the northern Corn Belt to produce fuel and food. Ind Crop Prod. 2013, 44: 718-725.
Zubr J, Matthaus B: Effects of growth conditions on fatty acids and tocopherols in < i > Camelina sativa</i > oil. Industrial crops and products. 2002, 15: 155-162. 10.1016/S0926-6690(01)00106-6.
Ni Eidhin D, Burke J, Lynch B, O’Beirne D: Effects of dietary supplementation with camelina oil on porcine blood lipids. J Food Sci. 2003, 68: 671-679. 10.1111/j.1365-2621.2003.tb05730.x.
Schuster A, Friedt W: Glucosinolate content and composition as parameters of quality of < i > Camelina</i > seed. Industrial crops and products. 1998, 7: 297-302. 10.1016/S0926-6690(97)00061-7.
Bell JM: Nutrients and toxicants in rapeseed meal: a review. J Anim Sci. 1984, 58: 996-1010.
Caine WR, Aalhus JL, Dugan MER, Lien KA, Larsen IL, Costello F, McAllister TA, Stanford K, Sharma R: Growth performance, carcass characteristics and pork quality of pigs fed diets containing meal from conventional or glyphosate-tolerant canola. Can J Anim Sci. 2007, 87: 517-526. 10.4141/CJAS07028.
Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT: The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agric. 2000, 80: 967-984. 10.1002/(SICI)1097-0010(20000515)80:7<967::AID-JSFA597>3.0.CO;2-V.
Pekel AY, Patterson PH, Hulet RM, Acar N, Cravener TL, Dowler DB, Hunter JM: Dietary camelina meal versus flaxseed with and without supplemental copper for broiler chickens: live performance and processing yield. Poult Sci. 2009, 88: 2392-2398. 10.3382/ps.2009-00051.
Morais S, Edvardsen RB, Tocher DR, Bell JG: Transcriptomic analyses of intestinal gene expression of juvenile Atlantic cod (Gadus morhua) fed diets with Camelina oil as replacement for fish oil. Comp Biochem Physiol B Biochem Mol Biol. 2012, 161: 283-293. 10.1016/j.cbpb.2011.12.004.
Schone F, Jahreis G, Lange R, Seffner W, Groppel B, Hennig A, Ludke H: Effect of varying glucosinolate and iodine intake via rapeseed meal diets on serum thyroid hormone level and total iodine in the thyroid in growing pigs. Endocrinologia experimentalis. 1990, 24: 415-427.
Zhang Y, Talalay P, Cho CG, Posner GH: A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A. 1992, 89: 2399-2403. 10.1073/pnas.89.6.2399.
Gross-Steinmeyer K, Stapleton PL, Tracy JH, Bammler TK, Strom SC, Eaton DL: Sulforaphane- and phenethyl isothiocyanate-induced inhibition of aflatoxin B1-mediated genotoxicity in human hepatocytes: role of GSTM1 genotype and CYP3A4 gene expression. Toxicol Sci. 2010, 116: 422-432. 10.1093/toxsci/kfq135.
Nho CW, Jeffery E: The synergistic upregulation of phase II detoxification enzymes by glucosinolate breakdown products in cruciferous vegetables. Toxicol Appl Pharmacol. 2001, 174: 146-152. 10.1006/taap.2001.9207.
Shahidi F, Gabon JE: Individual glucosinolates in six canola varieties. J Food Qual. 1989, 11: 421-431. 10.1111/j.1745-4557.1989.tb00905.x.
Kjaer AG R, Jensen RB: Isothiocyanates XXI. 10-methylsuphinyldecyl isothiocyanate, a new mustard oil present as a glucoside (glucocamelinin) in Camelina species. Acta Chem Scand. 1956, 10: 1614-1619.
Anwar-Mohamed A, El-Kadi AO: Sulforaphane induces CYP1A1 mRNA, protein, and catalytic activity levels via an AhR-dependent pathway in murine hepatoma Hepa 1c1c7 and human HepG2 cells. Cancer Lett. 2009, 275: 93-101. 10.1016/j.canlet.2008.10.003.
NRC: Nutrient Requiements of Swine. 1998, Washington DC: National Academy of Sciences, 10
CCAC: CCAC Guidelines on: The Care and Use of Farm Animals in Research, Teaching, and Testing. 2009, Ottawa, ON: Canadian Council on Animal Care, 8
Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW: GenBank. Nucleic Acids Res. 2012, 40: D48-D53. 10.1093/nar/gkr1202.
Primer3 on the WWW for General Users and for Biologist Programmers. Edited by: Rozen SHJS. 2000, Totowa, NJ, USA: Humana Press
Meadus WJ, Duff P, Rolland D, Aalhus JL, Uttaro B, Dugan MER: Feeding docosahexaenoic acid to pigs reduces blood triglycerides and induces gene expression for fat oxidation. Can J Anim Sci. 2011, 91: 601-612. 10.4141/cjas2011-055.
Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nature protocols. 2008, 3: 1101-1108. 10.1038/nprot.2008.73.
SAS user’s guide: Stastics. SAS for Windows, Version 9.1. Edited by: SAS. 2003, Cary, NC, USA: SAS Institute Inc
AOCS/Ak-1-92: Official methods and recommended practices of the American Oil Chemists’ Society 6th ed 2nd print Champain, Ill. Determination of Glucosinolate Content in Rapeseed and Canola by HPLC method Ak 1-92. 2012, 8.
Wagner KH, Kamal-Eldin A, Elmadfa I: Gamma-tocopherol–an underestimated vitamin?. Ann Nutr Metab. 2004, 48: 169-188. 10.1159/000079555.
Doring F, Rimbach G, Lodge JK: In silico search for single nucleotide polymorphisms in genes important in vitamin E homeostasis. IUBMB life. 2004, 56: 615-620. 10.1080/15216540400020346.
Habeanu M, Hebean V, Taranu I, Ropota M, Lefter N, Marin D: Dietary ecologic camelina oil - a beneficial source of n-3 PUFA in muscle tissue and health status in finishing pigs. Romanian Biotechnological Letters. 2011, 16: 6564-6571.
CFIA-DD96-07: Canadian Food Inspection Agency, vol. DD96-07 supplement. Determination of Environmental Safety of Monsanto Canada Inc.’s Roundup® Herbicide-Tolerant Brassica napus Canola Line GT200. 2011
Borg K: Physiopathological effects of rapeseed oil: a review. Acta Med Scand Suppl. 1975, 585: 5-13.
Lundell K, Wikvall K: Gene structure of pig sterol 12alpha-hydroxylase (CYP8B1) and expression in fetal liver: comparison with expression of taurochenodeoxycholic acid 6alpha-hydroxylase (CYP4A21). Biochimica et biophysica acta. 2003, 1634: 86-96. 10.1016/j.bbalip.2003.09.002.
Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S: Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res. 2002, 62: 5196-5203.
Huang J, Tabbi-Anneni I, Gunda V, Wang L: Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism. Am J Physiol Gastrointest Liver Physiol. 2010, 299: G1211-G1221. 10.1152/ajpgi.00322.2010.
Qin S, Chen J, Tanigawa S, Hou DX: Microarray and pathway analysis highlight Nrf2/ARE-mediated expression profiling by polyphenolic myricetin. Mol Nutr Food Res. 2013, 57: 435-446. 10.1002/mnfr.201200563.
Murphy CC, Murphy EJ, Golovko MY: Erucic acid is differentially taken up and metabolized in rat liver and heart. Lipids. 2008, 43: 391-400. 10.1007/s11745-008-3168-3.
de Wildt DJ, Speijers GJ: Influence of dietary rapeseed oil and erucic acid upon myocardial performance and hemodynamics in rats. Toxicol Appl Pharmacol. 1984, 74: 99-108. 10.1016/0041-008X(84)90275-8.