Relationship between tryptophan biosynthesis and indole-3-acetic acid production in Azospirillum: identification and sequencing of a trpGDC cluster

Springer Science and Business Media LLC - Tập 229 - Trang 41-51 - 1991
Wolfgang Zimmer1, Christine Aparicio1, Claudine Elmerich1
1Dept. des Biotechnologies, Unité de Physiologie Cellulaire, CNRS URA 1300, Institut Pasteur, Paris Cedex 15, France

Tóm tắt

Screening the tryptophan (Trp)-dependent indole-3-acetic acid (IAA) production of different Azospirillum species revealed that A. irakense KA3 released 10 times less IAA into the medium than A. brasilense Sp7. A cosmid library of strain Sp7 was transferred into A. irakense KA3 with the aim of characterizing genes involved in IAA biosynthesis. Trp-dependent IAA production was increased in two transconjugants which both contained an identical 18.5 kb HindIII fragment from Sp7. After Tn5 mutagenesis, cosmids carrying Tn5 insertions at 36 different positions of the 18.5 kb fragment were isolated and transferred into strain KA3. IAA production by the recipient strains was screened by HPLC. The Tn5 insertions of 4 clones with decreased IAA production were mapped on a 2 kb Sall — SphI fragment. Recombination of Tn5 insertions at this locus into the genome of strain Sp7 led to Trp auxotrophic mutants. A 5.2 kb EcoRI — SalI fragment including the kb SalI — SphI fragment was sequenced and six open reading frames were identified. Three of them were clustered and their deduced amino acid sequences showed significant similarity to TrpG, TrpD and TrpC, which are enzymes involved in tryptophan biosynthesis. One of the remaining open reading frames probably encodes an acetyltransferase. The region responsible for the enhanced Trp-dependent IAA production in strain KA3 corresponded to trpD, coding for the phosphoribosyl anthranilate transferase.

Tài liệu tham khảo

Abdel-Salam MS, Klingmüller W (1987) Transposon Tn5 mutagenesis in Azospirillum lipoferum: isolation of indole acetic acid mutants. Mol Gen Genet 210:165–170 Bae YM, Homgren E, Crawford IP (1989) Rhizobium meliloti anthranilate synthase: cloning, sequence and expression in Escherichia coli. J Bacteriol 171:3471–3478 Bozouklian H, Elmerich C (1986) Nucleotide sequence of the Azospirillum brasilense Sp7 glutamine synthetase structural gene. Biochimie 68:1181–1187 Bozouklian H, Fogher C, Elmerich C (1986) Cloning and characterization of the glnA gene of Azospirillum brasilense Sp7. Ann Inst Pasteur Microbiol 137:3–18 Brown K, Finch PW, Hickson ID, Emmerson PT (1987) Complete nucleotide sequence of the Escherichia coli argA gene. Nucleic Acids Res 15:10586 Crawford IP (1989) Evolution of a biosynthetic pathway: The tryptophan paradigm. Annu Rev Microbiol 43:567–600 Dayhoff M, Schwarz RM, Orcutt BC (1978) In: Dayhoff M (ed) Atlas of protein sequence and structure, Vol 5, Suppl 3. Natl Biomed Res Found, Silver Spring, Md, pp 345–352 de Zamaroczy M, Delorme F, Elmerich C (1990) Characterization of three different nitrogen-regulated promoter regions for the expression of glnB and glnA in Azospirillum brasilense Sp7. Mol Gen Genet 224:421–430 Elmerich C, Zimmer W, Vieille C (1991) Associative nitrogen fixing bacteria. In: Evans H, Burris R, Stacey G (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 211–257 Essar DW, Eberly L, Crawford IP (1990) Evolutionary differences in chromosomal locations of four early genes of the tryptophan pathway in fluorescent Pseudomonas: DNA sequences and characterization of Pseudomonas putida trpE and trpGDC. J Bacteriol 172:867–883 Fani R, Bazzicalupo M, Damiani G, Bianchi A, Schipani C, Sgaramella V, Polsinelli M (1989) Cloning of the histidine genes of Azospirillum brasilense: Organisation of the ABFH gene cluster and nucleotide sequence of the hisB gene. Mol Gen Genet 216:224–229 Franche C, Elmerich C (1981) Physiological properties and plasmid content of several strains of Azospirillum brasilense and A. lipoferum. Ann Inst Pasteur Microbiol 132a:3–17 Gauthier D, Elmerich C (1977) Relationship between glutamine synthetase and nitrogenase in Spirillum lipoferum. FEMS Microbiol Lett 2:101–104 Hartmann A, Singh M, Kingmüller W (1983) Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Can J Microbiol 29:916–923 Henner DJ, Band L, Shimotsu H (1985) Nucleotide sequence of the Bacillus subtilis tryptophan operon. Gene 34:169–177 Horinouchi S, Furuya K, Nishiyama M, Suzuki H, Beppo T (1987) Nucleotide sequence of the streptothricin acetyltransferase gene from Streptomyces lavendulae and its expression in heterologous hosts. J Bacteriol 169:1929–1937 Horowitz H, van Arsdell J, Platt T (1983) Nucleotide sequence of the trpD and trpC genes of Salmonella typhimurium. J Mol Biol 169:775–797 Kaplan JB, Nichols BP (1983) Nucleotide sequence of Escherichia-coli pabA and its evolutionary relationship to trp(G)D. J Mol Biol 168:451–468 Kaplan JB, Goncharoff P, Seibold AM, Nichols BP (1984) Nucleotide sequence of the Acinetobacter calcoaceticus trpGDC gene cluster. Mol Biol Evol 1:456–472 Kaplan JB, Merkel WK, Nichols BP (1985) Evolution of glutamine aminotransferase genes: nucleotide sequences of the pabA genes from Salmonella typhimurium, Klebsiella aerogenes and Serratia marcescens. J Mol Biol 183:327–340 Katzy EI, Iosipenko AD, Egorenkov DA, Zhuravleva EA, Panasenko VI, Ignatov VV (1990) Involvement of Azospirillum brasilense plasmid DNA in the production of indole acetic acid. FEMS Microbiol Lett 72:1–4 Khammas KM, Ageron E, Grimont PAD, Kaiser P (1989) Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soils. Res Microbiol 140:679–693 Klee H, Monotoya A, Horodyski F, Lichtenstein C, Garfinkel D, Fuller S, Flores C, Peschon J, Nester E, Gordon M (1984) Nucleotide sequence of the tms genes of the pTiA6NC octopine Ti plasmid: Two gene products involved in plant tumorigenesis. Proc Natl Acad Sci USA 81:1728–1732 Knauf VC, Nester ELF (1982) Wide host range vectors: a cosmid clone bank of an Azospirillum Ti plasmid. Plasmid 8:45–54 Kos T, Kuijvenhoven A, Hessing HGM, Pouwels PH, van den Hondel CAMJJ (1988) nucleotide sequence of the Aspergillus niger trpC gene: structural relationship with analogous genes of other organisms. Curr Genet 13:137–144 Lam WL, Cohen A, Tsouluhas D, Doolittle WF (1990) Genes for tryptophan biosynthesis in the archaebacterium Haloferax volcanii. Proc Natl Acad Sci USA 87:6614–6618 Magalhaes FM, Baldani JI, Souto SM, Kuykendall JR, Dbbereiner J (1983) A new acid-tolerant Azospirillum species. An Acad Bras Cien 55:417–430 Marocco A, Bazzicalupo M, Perenzin M (1983) Forage grasses inoculation with gentamycine and sulfaguanidine resistant mutants of Azospirillum brasilense. In: Klingmüller W (ed) Azospirillum II: Genetics, physiology, ecology. Springer-Verlag, Berlin, pp 149–158 Matsui K, Sano K, Ohtsubo E (1986) Complete nucleotide and deduced amino acid sequences of the Brevibacterium lactofermentum tryptophan operon. Nucleic Acids Res 14:10113–10114 Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:20–79 Mullaney EJ, Hamer JE, Roberti KA, Yelton MM, Timberlake WE (1985) Primary structure of the trpC gene from Azospirillum nidulans. Mol Gen Genet 199:37–45 Norrander J, Kempe T, Messing J (1983) Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26:101–106 Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448 Penalva MA, Sanchez F (1987) The complete nucleotide sequence of the trpC gene from Penicillium chrysogenum. Nucleic Acids Res 15:1874 Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S, De Ley J (1987) Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Knuth). Int J Syst Bacteriol 37:4351 Reynders L, Vlassak K (1979) Conversion of tryptophan to indoleacetic acid by Azospirillum sp. Soil Biol Biochem 11:547–548 Rivas MV, Jarvis ED, Rudner R (1990) The structure of the trpE, trpD and 5′ trpC genes of Bacillus pumilus. Gene 87:71–78 Ruckdäschel E, Kittell BL, Helinski DR, Klingmüller W (1988) Aromatic amino acid aminotransferases of Azospirillum lipoferum and their possible involvement in IAA biosynthesis. In: Klingmüller W (ed) Azospirillum IV: Genetics, physiology, ecology. Springer-Verlag, Berlin, pp 49–53 Sambrook J, Fritsch E, Maniatis T (1989) molecular cloning, 2nd edn, vol 1–3. Cold Spring Habor Laboratory, Cold Spring Harbor, New York Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5466 Sato S, Nakada Y, Kanaya S, Tanaka T (1988) Molecular cloning and nucleotide sequence of Thermus thermophilus HB8 trpE and trpG. Biochim Biophys Acta 950:303–312 Sekine M, Watanabe K, Syono K (1989) Nucleotide sequence of a gene for indole-3-acetamide hydrolase from Bradyrhizobium japonicum. Nucleic Acids Res 17:6400 Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1:784–791 Shine J, Dalgarno L (1974) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: Complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71:1341–1346 Slock J, Stahly DP, Han C-Y, Crawford IP (1990) An apparent Bacillus subtilis folic acid biosynthetic operon containing pab, an amphibolic trpG, a third gene required for synthesis of paraaminobenzoic acid, and the dihydropteroate synthase gene. J Bacteriol 172:7211–7226 Tang YW, Bonner J (1947) The enzymatic inactivation of indoleacetic acid. I. Some characteristics of the enzyme contained in pea seedlings. Arch Biochem 13:11–25 Tarrand JJ, Krieg NR, Dbbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with the description of a new genus Azospirillum gen. nov. and two species, Azospirillum brasilense sp. nov. Can J Microbiol 24:967–998 Tien TM, Gaskins MH, Hubbel DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum). Appl Environm Microbiol 37:1016–1024 Vieille C, Elmerich C (1990) Characterization of two Azospirillum brasilense Sp7 plasmid genes homologous to Rhizobium meliloti nod PQ. Mol Plant-Microbe Interact 3:389–400 Wain-Hobson S, Sonigo P, Danos O, Cole S, Alison M (1985) Nucleotide sequence of the AIDS virus, LAV. Cell 40:9–17 Yamada T, Palm CJ, Brooks B, Kosuge T (1985) Nucleotide sequences of Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proc Natl Acad Sci USA 82:6522–6526 Yanofsky C, Platt T, Crawford IP, Nichols BP, Christie GE, Horowitz H, van Cleemput M, Wu AM (1981) The complete nucleotide sequence of the tryptophan operon of Escherichia coli. Nculeic Acids Res 9:6647–6668 Yoshikawa A, Isono S, Sheback A, Isono K (1987) Cloning and nucleotide sequencing of the genes rimI and rimJ which encode enzymes acetylating ribosomal proteins S18 and S5 of Escherichia coli K12. Mol Gen Genet 209:481–488 Zalkin H, Paluh JL, van Cleemput M, Moye MS, Yanofsky C (1984) Nucleotide sequence of Saccharomyces cerevisiae genes TRP2 and TRP3 encoding bifunctional anthranilate synthase: indole-3-glycerol phosphate synthase. J Biol Chem 259:3985–3992 Zimmer W, Bothe H (1988) The phytohormonal interactions between Azospirillum and wheat. Plant Soil 110:239–247 Zimmer W, Elmerich C (1991) Regulation of the synthesis of indole-3-acetic acid in Azospirillum. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions, vol 1. Kluver Academic Publishers, London, pp 465–468 Zimmer W, Roeben K, Bothe H (1988) An alternative explanation for the plant growth promotion by bacteria of the genus Azospirillum. Planta 176:333–342