A slow release nitrogen fertiliser produced by simultaneous granulation and superheated steam drying of urea with brown coal
Tóm tắt
The inefficient use of nitrogen (N) fertiliser as a consequence of N losses from soil is a pressing issue in broad-acre agricultural systems. The research reported here tested the hypothesis that granulation of synthetic N fertiliser (urea) with a natural organic C resource (brown coal) would reduce fertiliser N loss from the soil system. Urea-enriched brown coal granules were simultaneously formed and dried within a pilot-scale superheated steam dryer. After application to unplanted soil columns, the urea-brown coal granules reduced nitrous oxide emission by up to 40 %, reduced mineral nitrogen leaching and maintained higher levels of N in topsoil when compared to conventional urea alone. Reduced gaseous N losses without a reduction in plant N uptake were also observed in planted soil columns treated with urea-brown coal granules. Brown coal-urea blended fertiliser showed potential for more efficient use of N in the long term and has environmental benefits in retaining more N in the soil.
Tài liệu tham khảo
Cameron KC, Di HJ, Moir JL. Nitrogen losses from the soil/plant system: a review. Ann Appl Biol. 2013;162:145–73.
Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, et al. Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl. 1997;7:737–50.
Allison FE. Soil organic matter and its role in crop production. London: Elsevier Scientific Publishing Company; 1973.
Accoe F, Boeckx P, Busschaert J, Hofman G, Van Cleemput O. Gross N transformation rates and net N mineralisation rates related to the C and N contents of soil organic matter fractions in grassland soils of different age. Soil Biol Biochem. 2004;36:2075–87.
Gentile R, Vanlauwe B, Van Kessel C, Six J. Managing N availability and losses by combining fertilizer-N with different quality residues in Kenya. Agric Ecosyst Environ. 2009;131:308–14.
Ding Y, Liu Y-X, Wu W-X, Shi D-Z, Yang M, Zhong Z-K. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Pollut. 2010;213:47–55.
Zheng H, Wang Z, Deng X, Herbert S, Xing B. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma. 2013;206:32–9.
Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere. 2012;89:1467–71.
Davidson D, Gu FX. Materials for sustained and controlled release of nutrients and molecules to support plant growth. J Agric Food Chem. 2012;60:870–6.
Chen D, Suter H, Islam A, Edis R, Freney JR, Walker CN. Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: a review of enhanced efficiency fertilisers. Soil Res. 2008;46:289–301.
Richards JE, Daigle J-Y, LeBlanc P, Paulin R, Ghanem I. Nitrogen availability and nitrate leaching from organo-mineral fertilizers. Can J Soil Sci. 1993;73:197–208.
González ME, Cea M, Medina J, González A, Diez MC, Cartes P, et al. Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Sci Total Environ. 2015;505:446–53.
Tran CKT, Rose MT, Cavagnaro TR, Patti AF. Lignite amendment has limited impacts on soil microbial communities and mineral nitrogen availability. Appl Soil Ecol. 2015;95:140–50.
Singh B, Macdonald LM, Kookana RS, van Zwieten L, Butler G, Joseph S, et al. Opportunities and constraints for biochar technology in Australian agriculture: looking beyond carbon sequestration. Soil Res. 2014;52:739–50.
Jirka S, Tomlinson T. State of the biochar industry—a survey of commercial activity in the biochar field. http://www.biochar-international.org/sites/default/files/State_of_the_Biochar_Industry_2013.pdf.
Ennis BJ, Lister JD. Particle size enlargement. In: Perry R, Green D, Maloney J, editors. Perry’s chemical engineers’ handbook. New York: McGraw-Hill; 1997. p. 20.
Tang ECW, Perkins E, Hoadley AFA, Hapgood KP. Development of lignite granulation regime map. In Chemeca 2012: quality of life through chemical engineering: 23–26 September 2012, Wellington, New Zealand. Engineers Australia, Barton, A.C.T, 2012. p. 665.
Bergins C. Kinetics and mechanism during mechanical/thermal dewatering of lignite. Fuel. 2003;82:355–64.
Potter OE, Beeby CJ, Fernando WJN, Ho P. Drying brown coal in steam-heated, steam-fluidized beds. Dry Technol. 1983;2:219–34.
Forster JC. JC: 3-Soil sampling, handling, storage and analysis. In: Kassem A, Nannipieri P, editors. Methods in applied soil microbiology and biochemistry. London: Academic Press; 1995. p. 49–121.
Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5:62–71.
Hignett TP. Physical and chemical properties of fertilizers and methods for their determination. In: Hignett TP, editor. Fertilizer manual. Dordrecht: Springer; 1985. p. 284–316.
Mujumdar AS. Superheated steam drying. Handb Ind Dry. 1995;2:1071–86.
DeLuca TH, Gundale MJ, MacKenzie MD, Jones DL. Biochar effects on soil nutrient transformations. In: Lehmann J, Joseph S, editors. Biochar for environmental management: science and technology. London: Earthscan Publications Ltd; 2015. p. 251–70.
Cayuela ML, Van Zwieten L, Singh BP, Jeffery S, Roig A, Sánchez-Monedero MA. Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric Ecosyst Environ. 2014;191:5–16.
Van Zwieten L, Singh BP, Kimber SWL, Murphy DV, Macdonald LM, Rust J, et al. An incubation study investigating the mechanisms that impact N 2 O flux from soil following biochar application. Agric Ecosyst Environ. 2014;191:53–62.