Wave breaking for nonlinear nonlocal shallow water equations

Acta Mathematica - Tập 181 - Trang 229-243 - 1998
Adrian Constantin1, Joachim Escher2
1Department of Mathematics, University of Zürich, Zürich, Switzerland
2Fachbereich 17, University of Kassel, Kassel, Germany

Tài liệu tham khảo

Alber, M. S., Camassa, R., Holm, D. &Marsden, J. E., The geometry of peaked solitons and billiard solutions of a class of integrable PDE's.Lett. Math. Phys., 32 (1994), 137–151. Alinhac, S.,Blow-up for Nonlinear Hyperbolic Equations. Progr. Nonlinear Differential Equations Appl., 17. Birkhäuser Boston, Boston, MA, 1995. —, Blow-up of classical solutions of nonlinear hyperbolic equations: a survey of recent results, inPartial Differential Equations and Mathematical Physics (Copenhagen, 1995; Lund, 1995), pp. 15–24. Progr. Nonlinear Differential Equations Appl., 21, Birkhäuser Boston, Boston, MA, 1996. Boyd, J. P., Peakons and coshoidal waves: traveling wave solutions of the Camassa-Holm equation,Appl. Math. Comput., 81 (1997), 173–187. Caffarelli, L. &Friedman, A., Differentiability of the blow-up curve for one-dimensional nonlinear wave equations.Arch. Rational Mech. Anal., 91 (1985), 83–98. Calogero, F. &Françoise, J.-P., A completely integrable Hamiltonian system.J. Math. Phys., 37 (1996), 2863–2871. Camassa, R. &Holm, D., An integrable shallow water equation with peaked solitions.Phys. Rev. Lett., 71 (1993), 1661–1664. Camassa, R., Holm, D. &Hyman, J., A new integrable shallow water equation.Adv. in Appl. Mech., 31 (1994), 1–33. Constantin, A. &Escher, J., Global existence and blow-up for a shallow water equation.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303–328. Constantin, A. & McKean, H. P., A shallow water equation on the circle. To appear inComm. Pure Appl. Math. Cooper, F. &Shepard, H., Solitons in the Camassa-Holm shallow water equation.Phys. Lett. A, 194 (1994), 246–250. Dieudonné, J.,Foundations of Modern Analysis. Academic Press, New York, 1969. Dodd, R. K., Eilbeck, J. C., Gibbon, J. D. &Morris, H. C.,Solitons and Nonlinear Wave Equations. Academic Press, New York, 1984. Evans, L. &Gariepy, R.,Measure Theory and Fine Properties of Functions. Stud. Adv. Math. CRC Press, Boca Raton, FL, 1992. Fokas, A. S. &Fuchssteiner, B., Symplectic structures, their Bäcklund transformation and hereditary symmetries.Phys. D, 4 (1981/82), 47–66. Fuchssteiner, B., Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation.Phys. D, 95 (1996), 229–243. Glassey, R., Finite-time blow-up for solutions of nonlinear wave equations,Math. Z., 177 (1981), 323–340. Hörmander L.,Lectures on Nonlinear Hyperbolic Differential Equations. Mathématiques & Applications, 26. Springer-Verlag, Berlin, 1997. —, The lifespan of classical solutions of nonlinear hyperbolic equations, inPseudo-Differential Operators (Oberwolfach, 1986), pp. 214–280. Lecture Notes in Math., 1256. Springer-Verlag, Berlin-New York, 1987. John, F., Formation of singularities in one-dimensional nonlinear wave propagation.Comm. Pure Appl. Math., 27 (1974), 337–405. —,Nonlinear Wave Equations—Formation of Singularities. Univ. Lecture Ser., Amer. Math. Soc., Providence, RI, 1990. Kato, T., Blow-up solutions of some nonlinear hyperbolic equations.Comm. Pure Appl. Math., 33 (1980), 501–505. —, Quasi-linear equations of evolution, with applications to partial differential equations, inSpectral Theory and Differential Equations (Dundee, 1974), pp. 25–70. Lecture Notes in Math., 448. Springer-Verlag, Berlin-New York, 1975. Kenig, C., Ponce, G. &Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle.Comm. Pure Appl. Math., 46 (1993), 527–620. Klainerman, S. &Majda, A., Formation of singularities for wave equations including the nonlinear vibrating string.Comm. Pure Appl. Math., 33 (1980), 241–263. Lax, P., Development of singularities of solutions of nonlinear hyperbolic partial differential equations.J. Math. Phys., 5 (1964), 611–613. Liu, P., Development of singularities in the nonlinear waves for quasilinear hyperbolic partial differential equations.J. Differential Equations, 33 (1979), 92–111. McKean, H. P., Integrable systems and algebraic curves, inGlobal Analysis (Calgary, 1978), pp. 83–200. Lecture Notes in Math., 755. Springer-Verlag, Berlin, 1979. Naumkin, P. &Shishmarev, I.,Nonlinear Nonlocal Equations in the Theory of Waves. Transl. Math. Monographs, 133. Amer. Math. Soc., Providence, RI, 1994. Ostrowski, A.,Vorlesungen über Differential- und Integralrechnung, Vol. III. Birkhäuser, Basel-Stuttgart, 1954. Schiff, J., Zero curvature formulations of dual hierarchies.J. Math. Phys., 37 (1996), 1928–1938. Seliger, R., A note on the breaking of waves.Proc. Roy. Soc. Ser. A, 303 (1968), 493–496. Sideris, T. C., Formation of singularities in solutions to nonlinear hyperbolic equations.Arch. Rational Mech. Anal., 86 (1984), 369–381. Strauss, W.,Nonlinear Wave Equations. CBMS Regional Conf. Ser. in Math., 73. Amer. Math. Soc., Providence, RI, 1989. Whitham, G. B.,Linear and Nonlinear Waves. J. Wiley & Sons, New York, 1980.